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THE STRUCTURE OF A SECURITY KERNEL FOR A Z8006
EULTIPROCESSOR

LYLE A. COX, Jr., and ROGER R. SCHELL, Col., USAF

Department of Computer Science

Naval Postgraduate School

Monterey, California

The security kernel technology has provided the technical

foundation for highly reliable protection of computerized

information. However, the operating system implementations

face two significant challenges: providing (1) adequate

computational resources for applications tasks, and (21 a

clean, straightforward structure whose correctness can be

easily reviewed. This paper presents the experience of an

ongoing security kernel implementation using the Advanced

Micro Devizes 16116 single-board computer based on the Z8002

microprocessor. The performance issues of process switch-

ing, domain changing, and multiprocessor bus contention are

explicitly addressed. The strictly hierarchical (i.e.,



loop-free) structure provides a series of increasingly capa-

ble, separately usable operating system subsets. Security

enforcement is structured in two layers: the basic kernel

rigorously enforces a non-discretionary (viz., lattice mo-

del) policy, while an upper layer provides the access re-

finements for a discretionary policy.

For the last two and a half years the Naval Postgraduate

School has been conducting a research and development pro-

ject involving security kernel based operating systems de-

signed for multiple processor implementations. As this work

continues we feel that it is important to report on our pro-

gress and experiences, especially in the area of micropro-

cessor implementations.

This effort has come to be known as the "SASS" or Secure

Archival Storage System project (1]. In fact, this is a

misnomer, as SASS is but a single instance of a more general

family of secure operating systems designed early in the

project (2]. While SASS has been the object of the majority

* of the research reported it is not the only implementation.

Another operating system of this family has also been writ-

ten to support a signal processing system that uses multiple

Intel 8086 processors E31.



SASS has been our principal testbed for exploring the im-

plementation and performance issues related to these types

of operating systems. SASS itself was designed to be a con-

prehensive multiuser, multilevel secure file storage system.

As designed, it will consist of a small number of

Z8000-based [4] single board computers sharing a single Sul-

tibus with storage devices and input/output devices. SASS

will interface via bidirectional lines to a number of "host"

systems, as illustrated in Figure 1. SASS will provide each

host with a hierarchical file system. This system can be

used to store and retrieve files, and share files with other

hosts. This design will allow SASS to serve as a central

hub of a data secure network of computers with diverse se-

curity authorization for sensitive information. SASS pro-

vides archival, shared storage while insuring that each in-

terfaced host processor can access only that information

appropriate to its security authorizations.

- iv -
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For this family of operating systems the security kernel

technology has been used not only to effect security but

also to provide the underlying organizational framework for

the operating system. The SASS, one member of this family,

is in the final stages of implementation. This development

experience has highlighted the importance of several foa-

tures that are key to this family:

-The pervasive, yet systematizing impact of the security

kernel methodology [5].

-The design simplicity that accompanies a loop-free mo-

dularization that is highly compatible with the resource

sharing and multiprogramming functions.

-The significance of a high degree of configuration in-

dependence, particularly for the ability to use the latest

microprocessors for teatbed implementation.

independent of security, this particular kernel structure

is attractive as a canonical operating system interface. It

appears adequate for a wide range of functionality and ca-

pacity, and it evidences a high degree of independence from

hardware Idiosyncrasies. These operating system features

will be discussed further below.
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Members of this operating system family are organized

with three distinct extended machine layers: (1) the secur-

ity kernel, (2) the supervisor, and (3) the applications.

This is illustrated in Figure 2. The concept of a hierarchy

of extended machines is, to be sure, not new; however, the

security kernel significantly constrains the organization.

in particular, for reason of security all the management of

physical resources must be within the kernel itself. Furth-

ermore, confidence is increased by keeping the kernel as

small and simple as possible. This means that much of what

is commonly thought of as the operating system is provided

outside the kernel inl the supervisor layer. For this parti-

cular family member there is no major applications layer

(viz., within SASS itself), since the applications are con-

tained in the individual hosts.

The basic family of operating systems requires the ker-

nels to provide extended virtual machines that specifically

support both asynchronous processes and segmented address

spaces. Within SASS, the kernel virtualizes processors, all

levels of storage, and input/output. The kernel creates

virtualized objects -- processes, segments, and devices. it

is this "pure" virtual interface that is attractive as the

-vii-
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basis for canonical operating system features. The SASS su-

pervisor is in turn built upon the kernel, using these vir-

tualized objects to construct the file system.

Both the kernel and the supervisor have certain responsi-

bilities for system security. The kernel manages all physi-

cal resources, and the kernel is distributed (i.e., includ-

ed) in the address space of every process. At this level,

isolation of the kernel -- protection from users and the su-

pervisor -- must be provided by hardware enforced domains.

The design of the system is strictly hierarchical (viz., the

kernel is more privileged than the supervisor) so protection

rings, as lefined for Multics (6], are a satisfactory domain

implementation.

The kernel has the responsibility for the enforcement of

access limitations: that is, the kernel provides the mechan-

ism for supporting non-discretionary security policy. The

SASS kernel can support any such policy which can be ex-

pressed by a lattice of access classes [7]. Every object --

process, segment, or device -- has a non-forgable label that

denotes its access class. This non-discretionary security

has been parameterized in SASS such that exactly one module

has knowledge of the interpretation of this label in terms

of a specific policy. Thus, only this single module need be

tailored to support a particular policy.

-ix-



SASS provides discretionary security (shared access

within the bounds of non-discretionary policy based on indi-

vidual user identification) via the supervisor and the file

structure. This discretionary security is completely out-

side of the kernel (in contrast with the KSOS [8] approach).

The supervisor handles the "Secure Reader-Writer Problem*

with a non-exclusionary approach (one writer, retry on read)

to provide synchronization between processes of different

access classes. This control of interprocess communication

is implemented via kernel primitives using Reed's event-

* counts and sequencers (9].

The SASS supervisor capabilities are achieved by associ-

ating two processes with each host link. These processes

access that portion of the SASS file structure associated

with that host. One of these processes provides I/O tran-

smission and link management, while the other, a file manag-

er, is responsible for the file system structure of its as-

sociated host. Communication between these processes (as is

communication between all processes) is achieved using

shared segments -- a mailbox. Synchronization is provided

by the kernel (with eventcounts and sequencers).

The complementary kernel/supervisor approach to security

has several advantages for SASS: the size and the coplexi-

-I-



ty of the kernel can be minimized# and, given reliable host

authentication, any host weaknesses will not impact the re-

liable enforcement of the non-discretionary security policy.

The security kernel approach constrains not only the in-

terface but also the detailed design and implementation of

internal state variables. The problem is to prevent indi-

rect information paths between processes with different ac-

cess classes. we address this problem using essentially the

approach detailed by Millen [10], although without the rigor

of a proof. Internal state variables, e.g., shared resource

tables, are assigned an access class, and it is confirmed

that its values will not be reflected to processes of an in-

consistent access class. The most apparent result is that

the 11success code" (returned in response to the invocation

of kernel primitives) primarily reflects the state of the

per-process virtual resources, not the shared physical re-

sources.

xi-
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Another aspect of the design that has helped to keep the

security kernel simple and understandable is the loop-free

structure of SASS. The loop-free design supports the soft-

ware engineering concept of *information hiding" [11], as

there are really no global data structures within SASS. The

kernel is internally organized into four distinct layers, as

illustrated in Figure 3; these layers, that will be de-

scribed below, are termed (1) segment and event managers,

(2) traffic controller, (3) memory manager, and (4) inner

traffic controller.

In practice we have been quite doctrinaire in enforcement

of the loop-free structure for this organization. While

many operating systems claim to be modular or well-struc-

tured, we empirically validate this claim. We "peel-off"

the upper layers one at a time by literally removing the

code and data, and then demonstrate that the remainder can

be loaded and run as a functionally intact, but obviously

limited, operating system subset. The function of each lay-

er will now be described, proceeding from the bottom upward.

- xii -
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IRAI TEI 2 Q0=01er- Processor multiplexing has two

layers, similar to those proposed for multics C12]. Each

physical processor has a fixed number of "virtual proces-

sors" that are multiplexed onto it. Two of these virtual

processors are dedicated to system services: an idle uirtu-

aprocessor and a memory manager process to manage the as-

ynchronous access to secondary storage devices. The remain-

ing virtual processors (currently two per physical

processor) are available to the (upper level) traffic cont-

roller. ?he inner traffic controller provides signal and

wait synchronization primitives that include a message that

is passed between virtual processors. in terms of tradi-

tional jargon, the inner traffic controller provides multi-

programming by scheduling virtual processors to run on the

CPU they are (permanently) associated wi.th. Note that this

structure implies that the security kernel is interruptible,

viz., is not a critical section; however, the inner traffic

controller itself is not interruptible. in addition, this

layer provides all the multiprocessing interactions between

individual physical processors, using a hardware "preempt"

interrupt.

A122"z jjaua~. This layer manages the multiplexing of the

physical storage resources, viz., "disk" and "core". rhis

layer also manages the segment descriptors in the memory

manaqement unit (NIO) image for each process. most of the

functions of this layer are executed by the per-CPU memory

- iv-



manager processes, with synchronization provided by inner

traffic comtroller signal and wait primitives. The single

board computers have per-processor, local memory; there is

also additional global memory that is addressable by all

processes. The memory manager insures that (only) shared

segments are in global memory.

This policy can require some transfers between local and

global memory; however, the low transaction rate of the ar-

chival storage system is not demanding, and this structure

minimizes bus transfer requirements under expected operating

conditions.

*T.ftIg ontrl_&eR. The variable number of processes (two

per host) are multiplexed onto virtual processors defined by

the inner traffic controller. Each process has an affinity

to the physical processor whose local memory contains a por-

tion of its address space at the time of the process sche-

duling decision. as indicated earlier, the traffic cont-

roller layer uses Reed's advance and await mechanism [9] to

provide interprocess communication.

Sece U I!I Z I UAIIL. All entries into the kernel

pass through the segment/event manager layer. The explicit

non-discretionary security checks are made at this level by

comparing the access class labels of subjects and objects.

This layer uses a per-process known segment table to convert

- xV -



process local names (viz.. segment number) for objects into

system-wile names. Each segment has associated with it two

eventcounts and a sequencer; thus, segment numbers also

serve as their names. The segment manager provides for the

creation and deletion of segments and their entry into and

removal from a process address space.

2aU 1ee2e2. A process invokes a security kernel function

usinq the traditional trap mechanism. The Z8000 "system

call" instruction causes a trap, and the gate keeper is

merely the trap handler. All parameters and return values

are "passed by value" in CPU registers; this simplifies se-

curity validation. The gate keeper erely calls the parti-

cular procedure that corresponds to the requested function.

One important aspect of this research has been the actual

implementation and testing of the concepts leveloped. Trad-

itionally the implementation of multiple processor struc-

tures has been an expensive undertaking. aecently the de-

velopment of sophisticated microprocessors that feature

multiple operating modes, advanced addressing, support of

multiple processor configurations, and a standard bus co-

nfiguration with peripheral support have all made the imple-

mentation of advanced operating systems on microprocessor

devices possible, and economically feasible.

- xvi -



The processors of SASS all share the sane bus; each

processor is a commercial single board computer with on-

board random access memory. These processors also share a

global memory, and certain peripheral devices. This co-

nfiquration is illustrated in Figure 4.

In general, security kernel based operating systems find

three processor-supported execut ion domains (operating

states) highly desirable: for tkt ternel, supervisor, and

applications. This is true ok the operating system family

discussed here. Currently there are no single chip proces-

sors that support three states. This is not a significant

problem for SASS, since it is the hosts rather than the SASS

system processors that execute user application programs.

Under these circumstances a two mode (kernel and supervisor)

machine is sufficient. Such architectures are currently

available as microprocessors, in particular the Z8000.

Accordingly, we are implementing a multiple microproces-

sor system to test the SASS concept. The current hardware

in use is the &AD 4116 single board computer [13] in a stan-

dard Multibus backplane. This configuration has a signifi-

cant limitation: it does not include the hardware Memory

Manager Unit, as described in [2].

- xvii -
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Currently we simulate in software the memory management

unit, so the kernel is not protected from the supervisor as

the original design specified. Hardware protection in the

form of addressing limitations is available, and has been

~ I used in some of the experiments to assure the integrity of
the kernel. in this configuration, the hardware protects

one half of the local memory from any access when the CPU is

operating in the normal mode. Any attempt to access memory

which is thus protected generates an interrupt and the fault

detection software traps the access. ?his is adequate for

current tests, but a complete memory management system is

*clearly more desirable. Our experiences on this testbed in

terms of performance and software development are discussed

further below.

The lessons learned to this point fall into two broad ca-

tegories: programming (software engineering) experiences,

and performance experiences. we will discuss both of these

issues below.

kraama Z&Reiu&M

The nature of this research effort has been highly struc-

tured, emphasizing modularity at every opportunity. The

software design is strictly "top-down". This has been a

-xix-



matter of good design practice, and of necessity. Since the

majority of the work has been performed by a succession of

Master's degree students (14,15,16,17,18,19] during their

brief six to nine months of research each, the clear defini-

tion of software modules has been key to the success of the

effort. We have found that the high degree of modularity

* has allowed the students to work on the project with a mini-

mum of "start-up" time, and a maximum of productive effort

and learning.

The actual implementation is proceeding in an essentially

bottom up manner, with test harnesses and stubs being writ-

ten as necessary for testing. rhe SASS modules were speci-

fied in a pseudo-language resembling current higher level

languages. The SASS modules as implemented were coded in

PLZ-AS3 (20], the Z8000 structured assembly language. We

found that the pseudo-code specifications of modules were

adequate, and that the translation from this code to the

structured assembly language was straightforward.

The structured assembly language of the Zilog Z8000 sup-

ported many of the constructs usually thought to be unique

to higher level languages, including typed record struc-

tures, DO-loops, IF-THEN-ELSE, and CASE. In fact, our pro-

grammers think of this assembly language as a higher level

language. Approximately 40 percent of the statements writ-

- xx -



ten in SASS are equivalent to statements i.n modern program-

minq languages.

Despite the qualities of the structured assembler, it was

selected by default. when the decision was made, the proto-

type hardware boards were just becoming available. There

vas virtually no software support available. Ia particular,

no higher level language was available. The software envi-

*ronaent was (by modern standards) very primitive, with no

tools for operating system development available. Neverthe-

less, the progression from microprocessor development system

to commercial single board computer system has been surpris-

ingly smooth (an opinion that some students might dispute).

The software development environment has grown slowly. let,

* this has not proved to be a handicap.

-xxi-



in the programming for the SASS, we have generally treat-

ed performance as a secondary issue, in deference to more

* basic concerns such as security and modularity. However, we

have addressed performance on a design level where perf or-

mance is strongly related to aL iitectural choices.

obviously, one basic design choice is the use of multi-

processing as a way to increase processing capacity. Howev-

er, bus contention is a major performance concern in the

multiprocessor configurations, since all processors share a

single Multibus. If, for example, all code and data were

located in global memory, then even two or three processors

would saturate the bus. However, in reality only shared,

writable segments need be in global memory. our use of a

purely virtual, segmented memory permits the kernel to let-

ermine exactly which are the shared, writable segments. AS

noted before, the memory manager layer totally controls the

allocation to global memory, and thus markedly controls bus

contention.

4 In the current SASS implementation we use the "Normal"

and "System" modes of the Z8000 hardware, with the system

mode dedicated to the security kernel. The domain changes

automatically generate a switch of the stack within the

-xxii-



hardware. This is particularly important to the efficiency

with which we can switch domains while maintaining the in-

tegrity of the kernel.

In SASS a process switch is achieved by switching the

stack. SASS saves the process history in the stack, so a

switch requires onxly the stack exchange. Preempt hardware

interrupts can initiate scheduler changes, and associated

virtual interrupts to the virtual processors. This sequence

is relatively efficient given the Zilog architecture. The

process switching performance question is more interesting

in the context of processor multiplexing.

The multiprogramming time is the interval from the time

the inner traffic controller signal primitive is invoked in

one virtual processor until there is a return from a (pend-

ing) wait invocation in a different virtual processor. rhis

includes both process switching and message passing opera-

tions.

* For interprocess communication, the read and ticket calls

(from the normal mode) include a system call though the gate

keeper to the kernel, the non-discretionary security checks,

and access to the eventcount or sequencer value; however, no

process switch is involved. The synchronization time in-

cludes the interval from the invocation of the system call

-xxiii-



(in normal mode) for advance in one process until the return

from a (blocking) await invocation in a different process.

This inclules the security checks and scheduling of both a

virtual and a physical processor.

A set of measurements on the current implementation are

summarized in Table 1. There has been no effort to Ntune"

the system to improve performance. We find these results

within our range of expectations for a single chip sicropro-

cessor.

• !i _Function Un (aiLI, 12conla)

,ultiprograming 0.5
signal/wait pair

Synchronization 2.3
advance/await pair

Read (Eventcount) 0.6

Ticket (Sequencer) 0.6

Table 1. Performance measurements
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A modern operating system featuring kernel based securi-

ty, segmented memory and multiple processors has been de-

signed and is being implemented using modern aicroproces-

sors. To date our focus on methodical design has paid off:

the implementation of a carefully designed, simple structure

using elementary software development tools has proceeded

weil.

The initial testbed implementation is running and prelim-

inary data is now available regarding the operating perfor-

mance of such systems implemented on microprocessors of ad-

vanced architectures. Data gathered suggests that the

security kernel is indeed an attractive structure for a mo-

dern operating system. There is a wide range of applica-

tions where sophisticated operating systems can be iaple-

mented upon microprocessors, and attractive performance can

be achieved, particularly through the use of multiple pro-

cessors.
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FORIIORD

This technical report contains edited segments of four mas-l i term' theses:-
Thl 21212 11. IIyemta~lin 1A MuL Aa y k uU-

2Etr &I~f A~r J~ciA& I.g JL~aI tI by a. B
Moore and A. V. Gary

1A ZIaeta1.2A 9-C IflkU1 22EBIS I"l EX2921
Aa .aia. 1 2r.._ ikUn LKn, l . .a.. l aa Ax o
by S. L. Reitz

IlfIHIMZ12& 21 i2U&W IIUU3IR LU I NIM-2
Ar kh.yLJ 1=211L U S.. e by J. T. ells

AhizAlrt JX~ta LsJq& by A. R. Strickler

which describe the development and implementation of the Na-

val Postgraduate School Secure Archival Storage System

(SASS). These theses are based upon the design outlined in

the Naval Postgraduate School SECURE ARCHIVAL STORAGE SYSTEM

Part I - Design - by R. R. Schell and L. A. Cox [17]. This

design is updated and presented in detail.

Some sections of each thesis have been excluded in order

to eliminate repetition and bulk. Similarly, the program

listings in this report represent the current state of the

project and do not pertain to any one thesis. An attempt

has been made to footnote some discrepancies between the
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system described by these theses and the current state.

However, there may be some details described herein which do

not correspond to the current SASS system. consequently,

the reader is advised to consult the individual thesis if

more detail on a particular phase of the development is re-

quired. & pr~gram description document, providing greater

clarification of SASS organization and listings, is also

available.
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Chapter I

B ACKGROUN3D

This chapter is an updated excerpt from Ijsau2-
111112 IMAM& IAU1212ur f2I !L f a &ios 1iral

=&jEa 1y=.Z by J. T. ells (20].

O'Connell and Richardson provided the design for a fami-

ly of secure, distributed, multi-microprocessor operating

systems from which the subset, SASS, was later derived [7].

In their work, two of the primary motivations were to pro-

vide a system that (1) effectively coordinated the process-

ing power of microprocessors and (2) provided information

security.

The basis for emphasis on utilization of microprocessors

is not purely that of replacing software with more powerful

(and faster) hardware (microprocessors) but is also an eco-

nomic issue. Software development and computing operations

are becoming more and more expensive, putting further pres-

sure on system designers to increasingly utilize people

solely for system functions that computers cannot perform in

a cost effective manner. fmicrocomputers, on the other hand,

4 are becoming less and less expensive and are, therefore, in-

creasingly being used for more functions.

The need for information security has been gradually re-

cognized as the uses of computers have expanded. As security

-2-



needs for specific computer systems have been recognized,

attempts have been made to modify the existing systems to

provide the desired security. The results have been systems

that could not be certified as secure and/or which haveIfailed to resist penetration efforts, i.e. systems which, in

effect, did not provide adequate information security. it

has become clear that, in order to be certifiably secure, a

computer system must have security designed in from first

principles [10,11]. Such is the case with SASS. Information

security was and continues to be a chief design feature.

Integral t3 the design goal of information security were two

related goals. one of these goals was to provide multilev-

el controlled access to a consolidated warehouse of data for

a network of multiple host computers. Zhe other key goal was

to provide for controlled sharing among the computer hosts.

A brief background of prior work relative to SASS fol-

lows. OfConnell and Richardson originated the design of a

secure family of operating systems. Their design provided

two basic parts for their system -- the supervisor (to pro-

vide operating system services) and the kernel (to provide

for physical resource management) . The design of the SASS

supervisor was completed by Parks (9]. do implementation or

further design effort on the supervior has followed, to

date. The initial design of the kernel was completed by

Coleman (2]. That design described the kernel in terms of

seven modules:

-3-



1. Gate Keeper Module -- provided for ring-crossing me-
chanism and thus isolation of the kernel.

2. Segment Manager Module -- provided for management of
segmented virtual memory.

.3. Traffic Controller module -- multiplexed processes
onto virtual processors and supports the inter- pro-
cess communication primitives Block and makeup.

4. Yon-Discretionary security module -- mediated non-
discretionary security access attempts.

5. Inner Traffic Controller module -- multiplexed virtu-
al processors onto real processors and provided the
Kernel synchronization primitives Signal and Wait.

6. memory Manager Module -- managed main memory and sec-
ondary storage.

7. input-output Manager -- managed the moving of infor-
mation to external devices outside the boundaries of
the SASS.

Refinement of the kernel design and partial implementation

was completed by Gary and Moore [5] in conjunction with

Reitz [121. The resultant description of the kernel as a re-

sult of their work was:

1. Gate Keeper Module

2. Segment Manager Module

3. Event manager Module -- worked with the Traffic Cont-
roller to manage the event data associated with the
IPC mechanism of eventcounts and sequencers.

4. Non- Discretionary Security module

5. Traffic Controller Module -- replaced Block and Wake-
up with Advance and &wait (to implement supervisor
IPC mechanism of eventcounts and sequencers).

6. Memory Manager Module

7. Inner Traffic Controller Module

-4-



Reitz implemented the Traffic Controller module and Inner

Traffic Controller module. Gary and Moore completed a de-

tailed design of the Memory Manager, originated the Memory

Manager code (written predominantly in PLZ/SYS), selected a

thread of the code, hand compiled it into PLZ/ASH and ran it

on the Z8000 developmental module. Wells provided the ia

plementation of the Segment manager and Non-Discretionary

Security modules as well as partial implementation of Dis-

tributed Memory Manager functions. Strickler refined and

implemented the process management functions for the SASS

(written in PLZ/ASM).

-5-
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Chapter I

BASIC CONCEPTS/DWRINITIOUS

This chapter is an excerpt from &aajijLj= M 91

natt b y A. R. Strickler [ 19). Minor changes
have been made for integration into report.

This section provides an overview of several concepts

essential to the SASS design. Readers familiar with SASS or

with secura operating system principles may wish to skip to

the next section.

A. VL=16.

The notion of a process has been viewed in many ways in

computer science literature. Organick £8] defines a process

as a set of related procedures and data undergoing execution

and manipulation, respectively, by one of possibly several

processors of a computer. Madnick and Donovan [6] view a

process as the locus of points of a processor executing a

collection of programs. Reed [10] describes a process as

the sequence of actions taken by some processor. In other

words, it is the past, present, and future *history* of the
states of the processor. In the SASS design, a process is

viewed as a logical entity entirely characterized by an ad-

dress space and an execution point. A processl address

space consists of the set of all memory locations accessible

-6-



by the process during its execution. This may be viewed as

a set of procedures and data related to the process. The

execution point is defined by the state of the processor at

any given instant of process execution.

As a logical entity, a process nay have logical attri-

butes associated with it, such as a security access class, a

unique identifier, and an execution state. This notion of

logical attributes should not be confused with the more typ-

ical notion of physical attributes, such as location in me-

mory, page size, etc. In SASS, a process is given a securi-

ty access class, at the time of its creation, to specify

what authorization it possesses in terms of information ac-

cess (to be discussed in the next section). It is also giv-

en a unique identifier that provides for its identification

by the system and is utilized for interaction among process-

es. A process may exist in one of three execution states:

1) running, 2) ready, and 3) blocked. In order to execute,

a process must be mapped onto (bound to) a physical proces-

sor in the system. Such a process is said to be in the

"running" state. & process that is not sapped onto a physi-

cal processor, but is otherwise ready to execute, is in the

"ready" state. A process in the "blocked" state is waiting

for some event to occur in the system and cannot continue

execution until the event occurs. At that time, the process

is placed into the ready state.

-7-



B. L 5&TZI MlUIT

There is an ever increasing demand for computer systems

that can provide controlled access to the data it stores.

I!

In this thesis, "information security" is defined as the

process of controlling access to information based upon

proper authorization. The critical need for information se-

curity should be clear. Banks and other commercial enter-

prises risk the theft or loss of funds. Insurance and cre-

dit companies are bound by law to protect the private or

otherwise personal information they maintain on their cus-

tomers. Unriversities and scientific institutions must pre-

vent the unauthorized use of their often over-burdened sys-

tens. The Department of Defense and other government

agencies must face the very real possibility that classified

information is being compromised or that weapon systems are

being tampered with. In fact, security related problems can

be found at virtually every level of computer usage.

The security of computer systems processing sensitive

information can be achieved by two means: external security

controls and internal security controls. in the first case,

security is achieved by encapsulating the computer and all

its trusted users within a single security perimeter estab-

lishe by physical means (e.g.* armed guards, fences, etc.)

This means of security is often undesirable due to its added

cost of implementation, the inherent risk of error-prone ma-

nual procedures, and the problem of trustworthy but error-

-8
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prone users. klso, since all security controls are external

to the computer system, the computer is incapable of secure-

ly handling data at differing security levels or users with

differing degrees of authorization. This restriction great-

ly limits the utility of modern computers. Internal securi-

ty controls rely upon the computer system to internally dis-

tinguish between multiple levels of information

classification and user authorization. This is~ clearly a

more desirable and flexible approach to information securi-

ty. This does not mean, however, that external security is

not needed. The optimal approach would be to utilize inter-

nal security controls to maintain information security and

external security controls to provide physical protection of

our system against sabotage, theft, or destruction. The

primary concern of this thesis is information security and

will therefore center its discussion on the achievement of

information security through implementation of the security

kernel concept.

one might argue that a "totally secure" computer system

is one that allows no access to its classified or otherwise

sensitive information. Such a system would not be of much

4value to its users. Therefore, when we say that a system

provides information security, it is only secure with res-

pect to some specific external security policy established

by laws, directives, or regulations. rhere are two distinct

aspects of security policy: non-discretionary and discre-

-9-



tionary. Each user (subject) of the system is given a label

denoting what classification or level of access the user is

authorized. Likewise, all information or segments (objects)

within the system are labelled with their classification or

level of sensitivity. The non-discretionary security me-

chanism is responsible for comparing the authorization of a

subject with the classification of an object and determining

what access, if any, should be granted. The DOD security

classification system provides an example of the non-discre-

tionary security policy and is the policy implemented in

SASS. The discretionary security policy is a refinement of

the non-discretionary policy. As such, it adds a higher de-

gree of restriction by allowing a subject to specify or res-

trict who may have access to his files. It must be empha-

sized that the discretionary policy is contained within the'

non-discretionary policy and in no way undermines or substi-

tutes for it. This prevents a subject from granting access

that would violate the non-discretionary policy. An example

of discretionary security is provided by the DOD "need to

know" policy. In SASS, the discretionary policy is imple-

mented within the supervisor [9] by means of an Access Con-

trol List (ACL). There is an ACL maintained for every file

in the system, which provides a list of all users authorized

access to that file. Every attempt by a user to access a

file is first checked against the &CL and then checked

against the non-discretionary security policy. The "least"

- 10-
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or "most restxi'-tive" access found in these checks is then

granted to the user.

The relationship between the labels associated with the

subject's access class (sac) and the object's access class

(oac) is defined by a lattice model of secure information

flow [12] as follows ("I" denotes "no relationship,,):

1. sac =oac, read and write access permitted

2. sac > oac, read access permitted

3. sac < oac, write access permitted

F 4. sac I oac, no access permitted

In order to understand how these access levels are deter-

mined, it is necessary to gain an awareness of and consider-

ation for several basic security properties.

The "Simple Security Property" deals with "read" access.

It states that a subject may have read access only to those

object's whose classification is less than or equal to the

classification of the subject. This prevents a subject from

reading any object possessing a classification higher than

his own.

The "Confinement Property" (also known as "*-property")

governs "write" access. It states that a ager may be grant-

ed write access only to those objects whose classification

is greater than or equal to the classification of the sub-

ject. This prevents a aser from writing information of a

higher classification (e.g., Secret) into a file of a lower

classification (e.g., Unclassified). It is noted that while

- 11 -



this property allows a user to write into a file possessing

a classification higher than his own, it does not allow hi.

access to any of the data in that file. The SASS design

does not allow a user to "write up" to higher classified

files. Therefore, in SASS, "sac < oac" denotes "no access

permitted."

The "Compatibility Property" deals with the creation of

objects in a hierarchical structure. In SASS, objects (seg-

ments) are hierarchically organized in a tree structure.

This structure consists of nodes with a root node from which

the tree eminates. The Compatibility Property states that

the classification of objects must be non-decreasing as we

move down the hierarchical structure. This prevents a pa-

rent node from creating a child node of a lower classifica-

tion.

Several prerequisites must be met in order to insure

that the security kernel design provides a.secure environ-

ment. Firstly, every attempt to access data must invoke the

Kernel. In addition, the Kernel must be isolated and tam-

perproof. Finally, the Kernel design must be verifiable.

This implies that the mathematical model, upon which the

Kernel is based, must be proved secure and that the Kernel

is shown is to correctly implement this model.
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C. ~~hZZQ

Segmentation is a key element of a security Kernel based

system. A segment can be defined as a logical grouping of

information, such as a procedure, file or data area [6).

Therefore, we can redefine a process' address space as the

collection of all segments addressable by that process.

Segmentation is the technique applied to effect management

of those segments within an address space. In a segmented

environment, all references within an address space reqire

two components: 1) a segment specifier (number) and 2) the

location (offset) within the segment.

A segment may have several logical and physical attri-

butes associated with it. The logical attributes may in-

clude the segment's classification, size, or permissable ac-

cess (read, write, or execute). These logical attributes

allow a segment to nicely fit the definition of an object

within the security kernel concept, and thus provide a means

for the enforcement of information security. A segment's

physical attributes include the current location of the seg-

ment, whether or not the segment resides in main memory or

secondary storage, and where the segment's attributes are

maintained by a segment descriptor. The segment descriptors

for each segment in a process# address space are contained

within a Descriptor Segment (viz., the 580 Image in SASS) to

facilitate the memory management of that address space.
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Segmentation supports information sharing by allowing a

single segment to exist in the address spaces of multiple

processes. This allows us to forego the maintenance of mul-

tiple copies of the same segment and eliminates the possi-

bility of conflicting data. Controlled access to a segment

is also enforced, since each process can have different at-

tributes (read/write) specified in its segment descriptor.

In the implementation of SASS, any segment which is shared,

but has "read only" access by every process sharing it, is

placed in the processor local memory supporting each of

these processes rather than in the global memory. This im-

plies the maintenance of multiple copies of some shared seg-

ments. It is noted that the problem of "conflicting data"

is avoided since this only applies to read only segments.

This apparent waste of memory and nonuse of existing sharing

facilities is justified by a design decision to provide max-

imum reduction of bus contention among processors accessing

global memory. This reduction in bus contention is consid-

ered to be of more importance than the saving of memory

space provided by single copy sharing of read only segments.

This decision is also well supported by the occurrence of

decreasing memory costs, which we have experienced in terms

of high speed bus costs.
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The requirement for isolating the Kernel from the re-

mainder of the system is achieved by dividing the address

space of each process into a set of hierarchical domains or

protection rings C18]. OlConnell and Richardson [7] defined

three domains in the family of secure operating systems:

the user, the supervisor, and the kernel. Only two domains

are actually necessary in the SASS design since it does not

provide extended user applications. The Kernel resides in

the inner or most privileged domain and has access to all

segments in an address space. System wide data bases are

also maintained within the Kernel domain to insure their ac-

cessibility is only through the Kernel. The Supervisor ex-

ists in the outer or least privileged domain where its ac-

cess to data or segments within an address space is

restricted.

While protection domains may be created through either

hardware or software mechanisms, a hardware implementation

provides much greater efficiency. zurrent microprocessor

technology only provides for the implementation of two do-

mains. This two domain restriction does not support OCon-

nell and Richardson's complete family design, but it is suf-

ficient to allow hardware implementation of the ring

structure required by the SASS subset.
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DiJkstra [4 ] has shown that the notion of abstraction

can be used to reduce the complexity of a problem by apply-

ing a general solution to a number of specific cases. &

structure of increasing levels of abstraction provides a

powerful tool for the design of complex systems and general-

ly leads to a better design with greater clarity and fewer

errors.

Each level of abstraction creates a virtual hierarchical

machine (6] which provides a set of "extended instructions"

to the system. A virtual machine cannot make calls to

another virtual machine at a higher level of abstraction and

in fact is unaware of its existence. This implies that a

level of abstraction is independent of any higher levels.

This independence provides for a loop-free design. Addi-

tionally, a higher level may only make use of t1e resources

of a lower level by applying the extended instruction set of

the lover level virtual machine. Therefore, once a level of

abstraction is created, any higher level is only interested

in the extended instruction set it provides and is not con-

cerned with the details of its implementation. In SASS,

once a level of abstraction is created for the physical re-

sources of the system, these resources become "virtualized"

making the higher levels of the design independent of the

physical configuration of the system.

-16-
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Chapter III

BASIC SASS ovERiZI

The purpose of the Secure Archival Storage System is to

provide a secure "data warehouse" or information pool which

can be accsszed and shared by a variable set of host compu-

ter systems possessing differing security classifications.

The primary goals of the SASS design are to provide informa-

tion security and controlled sharing of data among system

users.

Figure 5 provides an example of a possible SASS usage.

The System is used exclusively for managing an archival sto-

rage system and does not provide any programming services to

its users. Thus the users of the SASS may only create,

store, retrieve, or modify files within the SASS. The host

computers ire hardwired to the system via the 1/0 ports of

the Z8001 with each connection having a fixed security clas-

sification. Each host must have a separate connection for

each security level it wishes to work on (It is important to

note that Figure 5 only represents the logical interfacing

of the system. Specifically, the actual connection with the

host system must be interfaced with the Kernel as the I/0

instructions for the port are privileged). in our example,

Host #1 can create and modify only Top Secret files, but it
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can read files which are Top Secret, Secret, confidential,

or Unclassified. Likewise, Host #2 can create or modify

secret files, using its secret connection or confidential

files, using its confidential connection. Host #2 cannot

create or modify Top Secret or Unclassified files.

in order to provide information security and controlled

sharing of files, the SASS operates in two domains: (1) the

Supervisor domain and (2) the Kernel domain. The SASS ac-

hieves this desired environment through a distributed oper-

ating system design which consists of two primary modules:

the Supervisor and the Security Kernel. Each host system

connected to the SASS has associated with it two processes

within the SASS which perform the data transfer and file

management on behalf of that host. The host computer commu-

nicates directly with its own I/0 process and File manager

process within the SASS.

We can use our notion of abstraction to present a system

overview of the SASS. The SASS consists of four primary

levels of abstraction:

Level 3-The Host Computer Systems

Level 2-The Supervisor

Level I-The Security Kernel

Level 0-The SASS Hardware

&pictori&l representation of this abstract system overview

is presented in Figure 6. This representation is limited to

a dual host system for clarity and space restrictions. Note
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that the Gate Keeper module is in actuality the logical

boundary between levels one and two and as such will be de-

scribed separately.

Level 3, the host computer systems, of SASS has already

been addressed. It should be noted that the SASS design

makes no assumptions about the host computer systems. There-

fore each host may be of a different type or size (i.e.- mi-

cro, mini, or saxi-computer system). Furthermore, the ne-

cessary physical security of the host systems and their

• !respective data links with the SASS is assumed.
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Chapter IT

SUOPERVIS OR

Level 2 of the SASS system is composed of the supervisor

domain. As already stated, the SASS consists of two do-

mains. The actual implementation of these domains was

greatly simplified since the Z8001 microprocessor provides

two modes of execution. The system mode, with which the

Kernel was implemented, provides access to all machine in-

structions and all segments within the system. The normal

mode, with which the Supervisor was implemented, only pro-

vides access to a limited subset of machine instructions and

segments within the system. Therefore, the Supervisor oper-

ates in an outer or less privileged domain than the Kernel.

The purpose of the Supervisor is to manage the data link

between the host computer systems and the SASS by means of

Input/Output control, and to create and manage the file

hierarchy of etch host within the SASS. These functions are

accomplished via an Input/Output (1/0) process and a File

Manager (?M) process within the Supervisor. A separate FS

and I/O process are created and dedicated to each host at

the time of system initialization.

-23-



A. nits BLUM llNAUt

The F process directs the interaction between the host

computer systems and the SASS. It interprets all commands

received from the Host computer and performs the necessaryI action upon them through appropriate calls to the Kernel.

The primary functions of the F process are the management

of the Hostfs virtual file system and the enforcement of the

discretionary security policy.

j The virtual file system of the Host is viewed as a hier-

archy of files which are implemented in a tree structure.

The five basic actions which may be initiated upon a file at

this level are: 1) to create a file, 2) to delete a file, 3)

to read a file, 14) to store a file, and 5) to modify a file.

The F process utilizes a F Known Segment Table (FA_KST) as

the primary database to aid in this management.

The FM process maintains an Access Control List (ACL)

through which it enforces the discretionary security in

SASS. The PM process initializes an ACL for every file in

its Host's file system. The ACL is merely a list of all us-

ers that are authorized to access that file. The ACL is

checked upon every attempt to access a file to determine its

authorization. The user (host computer) directs the Fa pro-

cess as to what entries or deletions should be made in the

ACL, and as such, specifies who he wishes to have access to

his file. As noted earlier, discretionary security is a re-

finement to the Non-Discretionary Security Policy and there-
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fore can only be utilized to add further access restrictions

to those provided by the Von-Discretionary Security. This

prevents a user from granting access to a file to someone

who otherwise would not be authorized access.

I B. 1112fl OCESS

The I/0 process is responsible for managing the input

and output of all data between the host computer systems and

the SASS. The I/O process is subservient to the F3 process

and receives all of its commands from it. Data is transfer-

red between the SASS and Host Computer systems in fixed size

"packets". These packets are broken up into three basic

types: 1) a synchronization packet, 2) a command packet, and

3) a data packet. In order to insure reliable transmission

and receipt of packets between the Host computer and the

SASS, there must exist a protocol between them. Parks [9]

provides a more detailed description of these packets, and a

possible multi-packet protocol.

- 25 -



Chapter V

GATE KEEPER

The primary objective of the gate keeper is to isolate

the Kernel and make it tamperproof. This goal is accom-

plished by reason of a software ring crossing mechanism pro-

vided by the gate keeper. In terms of SASS, this notion of

"ring-crossing" is merely the transition from the Supervisor

f domain to the Kernel domain. As noted earlier, the gate

keeper establishes the logical boundary between the Supervi-

sor and the Kernel, and as a matter of course, it provides a

single software entry point (enforced by hardware) into the

Kernel. Therefore, any call to the Kernel must first pass

through the gate keeper.

rThe gate keeper acts as a trap handler. once it is in-

voked by a user (Supervisor) process, the hardware preempt

interrupts are masked, and the user process' registers and

stack pointer are saved (within the kernel domain). It then

takes the argument list provided by the caller and validates

these passed parameters to insure their correctness. To aid

in the validation of these parameters, the gate keeper uti-

lizes the Parameter Table as a database. The Parameter ta-

ble contains all of the permitted functions provided by the

Kernel. These relate directly to the extended instruction
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set (viz., Supervisor calls) provided by the Kernel (these

extended instructions vill be described in the next sec-

tion). If an invalid call is encountered by the gate keep-

er, -an error code is returned, and the Kernel is not in-

voked. If a valid call is encountered by the gate keeper,

the arguments and control are passed to the appropriate Ker-

nel module.

Once the Kernel has completed its action on the user re-

quest, it passes the necessary parameters and control back

to the gate keeper. It this point, the gate keeper deter-

mines if any software virtual preempt interrupts have occur-

red. If they have, then the virtual preempt handler is in-

voked vice the Kernel being exited (virtual interrupt

structure is discussed by Strickler [19]. Correspondingly,

if a software virtual preempt has not occurred, then the re-

turn arguments are passed to the user process. The user

process' registers and stack pointer (viz., its execution

point) are restored and control returned to the Supervisor

domain. A detailed description of the Gate Keeper interface

and implementation is provided by Strickler (19].
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Chapter VI

DISTRIBUTED KERNEL

Level 1 of our abstract view of SASS consists of two

components: the distributed Kernel and the non-distributed

Kernel. These tvo elements comprise the Security Kernel of

the SASS. The Security Kernel has two primary objectives:

1) the management of the system's hardware resources, and 2)

the oe.'nrcement of the non-discretionary security policy.

It exec~tes in the most privileged domain (viz., the system

mode of the Z8001) and has access to all machine instruc-

tions. The follIowing section will provide a brief descrip-

tion of the distributed Kernel, its components, and the ex-

tended instruction set it provides. A discussion of the

non-distributed Kernel will be given in the next section.

The distributed Kernel consists of those Kernel modules

whose segments are contained (distributed) in the address

space of every user (Supervisor) process. Thus, in effect,

the distributed Kernel is shared by all user processes in

the SASS. The distributed Kernel is composed of the Segment

4 Manager, the Event Manager, the Non-Discretionary Security

Module, the Traffic Controller, the Inner Traffic controll-

er, and the Distributed Memory Manager Module. The Segment

Manager and the Event Manager are the only "user visible"
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modules in the distributed Kernel. Tn other words, the set

of extended instructions available to ustJr processes invokes

either the Segment Manager or the Event Manager.

A. ABOUT!!t~ UU.%U~~l

The objective of the Segment Manager is the management

of a process' segmented virtual storage. The Segment Manag-

er is invoked by calls from the Supervisor domain via the

gate keeper. Calls to the Segment manager are made by means

of six extended instructions provided by the segment manag-

er. These extended instructions (viz., entry points) are:

1) CREATE_SEGKENT, 2) DELETESEGRENT, 31 MAKB_KOU, 4)

TERMINATE, 5) SSWAP IN, and 6) SB_SVAPOUT. The extended

instructions CREATE-SEGMENT and DELETE-SEGNENT add and re-

move segments from the SASS. MAKE-KNOVN and TERMINATE add

and remove segments from the address space of a process.

Finally, S_SWiP_IN and SN_SVAP_OUT move segments from sec-

ondary sto-age to main storage and vice versa.

The primary database utilized by the Segment Manager is

the Known Segment Table (KST). A representation of the

structure of the KST is provided in Figure 7. The KST is a

process local database that contains an entry for every seg-

ment in the address space of that process. The KS! is in-

dexed by segment number with each record of the KST contain-

ing descriptive information for a particular segment. The

KST provides a mapping mechanism by which the segment number
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of a particular segment can be converted into a unique han-

dle for use by the Memory Manager. The Memory Manager viii

be discussed in the next chapter.
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Figure 7: Known Segment Table (KST)
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B. HIat lAHAtl

The purpose of the Event Manager is the management of

event data which is associated with interprocess communica-

tions within the SASS. This event data is implemented by

means of eventcounts (a synchronization primitive discussed

by Reed [11]). The Event Manager is invoked, via the Gate

Keeper, by user processes residing in the Supervisor domain.

There are two eventcounts associated with every segment ex-

isting in the Supervisor domain. These eventcounts (viz.,

Instance 1 and Instance 2) are maintained in a database re-

siding in the Memory Manager. The Event Manager provides

its management functions through its extended instruction

set READ, TICKET, ADVANCE, and ANAl?, and in conjunction

with the extended instructions TC-ADVANCE and TCAWAIT pro-

vided by the Traffic Controller (to be discussed next).

These extended instructions are based on the mechanism of

eventcounts and sequencers [11]. The Event manager verifies

the access permission of every interprocess communication

request through the Non-Discretionary Security Module. The

extended instruction READ provides the current value of the

eventcount requested by the caller. rICKET provides a com-

plete time ordering of possibly concurrent events through

the mechanism of sequencers. The Event manager will be dis-

cussed in more detail by Strickler (19].
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The purpose of the Son-Discretionary Security nodule

(NDS) is the enforcement of the non-discretionary security

policy of the SASS. While the current implementation of

SASS represents the Department of Defense security policy,

any security policy which may be represented through a lat-

tice structure (3] may also be implemented. The NDS is in-

voked via its extended instruction set: CLASSEQ and

CLASSGE. The WDS is passed two classifications which it

compares and then analyzes their relationship. CLASSBQ

will return a true value to the calling procedure only if

the two classifications passed were equal. The CLASSGE in-

struction will return true if a given classification is ana-

lyzed to be either greater than or equal to another given

classification. The lDS does not utilize a data base as it

works only with the parameters it is passed.

D. nAUlZi IZo12L&IJ

The task of processor scheduling is performed by the

traffic controller. Saltzer (i] defines traffic controller

as the processor multiplexing and control communication sec-

tion of an operating system. ?he current SASS design uti-

lizes Reed's [10] notion of a two level traffic controller,

consisting of: 1) a Traffic Controller (TC1 and 2) an Inner

* Traffic Controller (ITC).
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The primary function of the Traffic Controller is the

scheduling (binding) of user processes onto virtual proces-

sors. A virtual processor (VP) is an abstract data struc-

ture that simulates a physical processor through the preser-

vation of an executing process' attributes (viz., the

execution point and address space). Multiple VP's nay exist

for every physical processor in the system. Two VP's are

permanently bound to Kernel processes (viz., Memory Manager

and Idle) and as such are not in contention for process

scheduling. These processes and their corresponding virtual

. processors are invisible to the TC. The remaining virtual

* processors are either idle or are temporarily bound to user

processes as scheduled by the TC. The database utilized by

the TC in process scheduling is the Active Process Table

(APT). Figure 8 provides the structure of the APT.

The APT is a system-wide Kernel database containing an

entry for every user process in the system. Since the cur-

rent SASS design does not provide for dynamic process crea-

tion/deletion, a user process is active for the life of the

system. Therefore, the size of the APT is fixed at the time

of system generation. The APT is logically composed of

three parts: 1) an APT header, 2) the main body of the APT,

and 3) a VP table. The APT header includes: I) a Lock to

provide for a mutual exclusion mechanism, 2) a Running List

indexed by VP ID to identify the current process running on

each VP, 3) a Ready List, uhich points to the linked list of
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Figure 8: Active Process Table (APT)
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processes which are ready for scheduling, and 4) a Blocked

List, which points to the linked list of processes which are

in the blocked state awaiting the occurrence of some event.

A design decision was made to incorporate a single list

of blocked processes instead of the sore traditional notion

of separate lists per eventcount because of its simplicity

and its ease of implementation. This decision does not ap-

preciably affect system performance or efficiency as the

j "blocked" list will never be very long. The VP table is in-

dexed by logical CPU number and specifies the number of VP's

associated with the logical CPU and its first VP in the Run-

ning List. The logical CPU number, obtained during system

initialization, provides a simple/ means of uniquely identif-

ying each physical CPU in the system. The main body of the

APT contains the user process data required for its effi-

cient control and scheduling. NEXTAkP provides the linked

list threading mechanism for process entries. The DBR entry

is a handle identifying the process' Descriptor Segment

which is employed in process switching and memory manage-

ment. The ACCESS-CLASS entry provides every process with a

security label that is utilized by the Event manager and the

Segment Manager in the enforcement of the Von-Discretionary

Security Policy. The PRIORITY and STATE entries are the

primary data used by the Traffic Controller to effect pro-

cess scheduling. AFFINITY identifies the logical CPU which

is associated with the process. VP ID is utilized to iden-
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tify the virtual processor that is currently bound to the

process. Finally, the EVENTCOUNT entries are utilized by

the TC to manage processes which are blocked and awaiting

the occurrence of some event. HANDLE identifies the segment

associated with the event, INSTANCE specifies the event, and

COUNT determines which occurrence of the event is needed.

The Traffic Controller determines the scheduling order

* by process priority. Every process is assigned a priority

at the time of its creation. Once scheduled, a process will

run on its VP until it either blocks itself or it is

preempted by a higher priority process. To insure that the

TC will always have a process available for scheduling,

there logically exists an "idle" process for every VP visi-

ble to the TC. These "idle" processes exist at the lowest

process priority and, consequently, are scheduled only if

there exists no useful work to be performed.

The Traffic Controller is invoked by the occurrence of a

virtual preempt interrupt or through its extended instruc-

tion set: ADVANCE, AWAIT, PROCESSCLASS, and

GETDBRNUMBER. ADVANCE and AWAIT are used to implement the

IPC mechanism envoked by the Supervisor. PROCESS-CLASS and

GETDBENUMBER are called by the Segment Manager to ascer-

tain the security label and DBR handle, respectively, of a

named process. A more detailed discussion of the TC is pro-

vided by Strickler [191.

-37-



E. 1111 11"Ha CONTROLLU

The Inner Traffic Controller is the second part of our

two-level traffic controller. Basically, the ITC performs

two functions. It multiplexes virtual processors onto the

actual physical processors, and it provides the primitives

for which inter-VP communication within the Kernel is iaple-

mented. A design choice was made to provide each physical

processor in the system with a small fixed set of virtual

processors. Two of these VP's are permanently bound to the

Kernel processes. The Memory Manager is bound to the high-

est priority VP. Conversely, the Idle Process is bound to

the lowest priority VP and, as a result, will only be sche-

duled if there exists no useful work for the CPU to perform.

The primary database utilized by the ITC is the Virtual Pro-

cessor Table (VPT). Figure 9 illustrates the VPT.

The VPT is a system wide Kernel database containing en-

tries for every CPU in the system. The YPT is logically

composed of four parts: 1) a header, 2) a VP data table, 3)

a message table, and 4) an external VP li... The header in-

cludes a L3CK (spin lock) that provides a mutual exclusion

mechanism for table access, a RUNNING LIST (indexed by logi-

cal CPU #) that identifies the VP currently running on the

corresponding physical CPU, a READY LIST (indexed by logical

CPU #) which points to the linked list of VP's which are in

the "ready" state and awaiting scheduling on that CPU, and a

FREE LIST which points to the linked list of unused entries

- 38 -



-- I - ---
Lock i |

IRunningList IVPT Entry #

I CPU_No--I I- I I
I I I -I

V I ---- i
I-- - --- VPT

I ReadyList IVPT Entry #1 1 Header
I - -- --I I

I CPU_No--I -----------.. I
I i-----------I
V -------- I

-------------- -----------I
FreeList i 1

-------------- I------------I--
I------

I .............--I-....I-----------------

INEXT 1. 1 1 1 I EXT I
IRE&DYIDBRIST&TEIIDLEIVIRTUALIPHYSIC&L IPRIIVP IMSG I
I VP I I IFLkGIPREENPTIPROCESSORI IID ILISTI

I -------------I_---D --------

I -----------
I I . I .I I- I I

I------I---I---I-----I---------------

I .. .. I. . . . .I ... I I -i ...I

I --- I---I-I-----------------

I I.. . . . . . .I ... I I I -- I . .

I-----....I-----I ----- ---------------

-----SINDEI I------.------ .---I EITVPD-.........-
I EZTISG SENDER I SG I I-----------

------------ IVPTI I I
IIII lintrylIi I

I -------.--------- I I No I I I I

SV -------- I-------I--- I-
..... I I------------

External

I List
message List

Figure 9: Virtual Processor rable (VPT)
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in the message table. The VP data table contains the de-

scriptive data required by the ITC to effectively manage the

virtual processors. The DBR entry points within the MAU In-

age to the descriptor segment for the process currently run-

ning on the VP. PRI (Priority), STATE, IDLE_FLAG, and

PREEMPT are the primary data used by the ITC for VP schedul-

ing. PREEMPT indicates whether or not a virtual preempt is

pending for the VP. The IDLE-FLAG is set whenever the TC

has bound -n "idle" process to the VP. Normally, a VP with

the IDLE-FLAG set will not be scheduled by the ITC as it has

no useful work to perform. In fact, such a VP will only be

scheduled if the PREEMPT flag is set. This scheduling will

allow the VP to be given (bound) to another process.

PHYSICAL PROCESSOR contains an entry from the Processor Data

Segment (PRDS) that identifies the physical processor that

the VP is executing on. EXT_3P_ID is the identifier by

which the VP is known by the Traffic Controller. A design

choice was made to have the EXTVPID equate to an offset

into the External VP List. The External VP List specifies

the actual VP ID (viz., VPT entry number) for each external

VP identifier. This precluded the necessity for run time

calculation of offsets for the EXTVP_ID. NEXTREADYVP

provides the threading mechanism for the "Ready" linked

list, and 8SGLIST points to the first entry in the Message

Table containing a message for that VP. The Message Table

provides storage for the messages generated in the course of
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Inter-Virtual Processor communications. MSG contains the

actual communication being passed, while SENDER identifies

the VP which initiated the communication. N8XT_SG provides

* a threading mechanism for multiple messages pending for a

single VP.

The ITC is invoked by means of its extended instruction

set: iA I, SIGNAL, SW&P_VDBR, IDLE, SET-PREEMPT, and

RUNNING_3P. NAIT and SIGNAL are the primitives employed in

implementing the Inter-VP communication. SWAPVDBER, IDLE,

SET_PREEmPT, and RUNNING_VP are all invoked by the Traffic

Controller. SWAPVDBR provides the means by which a user

process is temporarily bound to a virtual processor. IDLE

binds the "Idle" process to a VP (the implication of this

instruction will be discussed later). SET_PREEEPT provides

the means of indicating that a virtual preempt interrupt is

pending on a VP (specified by the TC) by setting the PREEMPT

flag for that VP in the VPT. RUNNINGVP provides the TC

with the external VP ID of the virtual processor currently

runniDg on the physical processor.

F,. AZIlZll = 1U2IU IAAI

4 The Distributed Memory Manager provides an interface

structure between the Segment Manager and the Memory Manager

Process. This interfacing is necessitated by the fact that

the Memory Manager Process does not reside in the Distribut-

ed Kernel and consequently is not included in the user pro-



cess' address space. The primary functions performed in

this module are the establishment of Inter-VP Communication

between the VP bound to its user process and the VP perma-

nently bound to the Memory Manager Process, the manipulation

of event data, and the dynamic allocation of available memo-

ry. The Distributed Memory Manager Module is invoked by the

Segment Manager through its extended instruction set:

MM_CREATEENTRY, MODELETEENTRY, MMACTIV&TE,

MMDEACTIVATE, MM SUAP_IN, and NMMSUAP_OUT. These extended

instructions are utilized on a one to one basis by the ex-

tended instruction set of the Segment Manager (e.g.,

SMSWAPIN utilizes (calls) MMSWAPINI. Wells [20] pro-

vides a more detailed description of this portion of the

Distributed Memory Manager and the extended instruction set

associated with it.

The Distributed Memory Manager is also invoked through

its remaining extended instructions: MMREAD EVNTCOUNT,

MTICKET, MMDVANCE, and MMA&LLOCATE. These Distributed

Memory Manager functions are discussed in detail by Strick-

ler [191.
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Chapter VII

50-DISTRIBUTED KERNEL

The Non-Distributed Kernel is the second element resid-

ing in Level 1 of our abstract system view of the SASS. The

sole component of the Non-Distributed Kernel is the Memory

Manager Process.

A. Asfigjj §MLU POCIIs

The primary purpose of the Memory Manager Process is the

management of all memory resources within the SASS. These

include the local and global main memories, as well as the

hard-disk based secondary storage. A dedicated Memory Ian-

ager Process exists for every CPU in the system. Each CPU

possesses a local memory where process local segments and

shared, non-writeable segments are stored. There is also a

global memory, to which every CPU has access, where the

shared, writeable segments are stored. It is necessary to

store these shared, writeable segments in the global memory

to ensure that a current copy exists for every access.

The Memory Manager Process is tasked by other processes

within the Kernel domain (via Signal and Wait) to perform

memory management functions. These basic functions include

the allocation/deallocation of local and global memory and
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of secondary storage, and the transfer of segments between

the local and global memory and between secondary storage

and the main memories. The extended instruction set provid-

ed by the Memory Manager Process includes: CREATB_ErIY,

4 DELETEENTRY, ACTIVATE, DEACTIVATE, SVAP_3N, and SEAP_3UT.

These instructions correspond one to one with those of the

Distributed Memory Manager Module. The system wide data

bases utilized by all memory manager Processes are the Glo-

bal Active Segment Table (G_AST), the Alias Table, the Disk

Bit Hap, and the Global Memory Bit Hap. The processor local

databases used by each memory Manager Process are the Local

Active Segment Table (LAST), and the Local Memory Bit Nap.

Gary and Moore (5] provide a detailed description of the Me-

mory manager, its extended instruction set, and its databas-

es.

A summary of the extended instruction set created by the

components of the Security Kernel is provided by Figure 10.

One might question the prudence of omitting

PHYS_PREERPT_HANDLER and VIRT_PREEMPTJANDLER (viz., the

handler routines for physical and virtual interrupts) from

the extended instruction set as both of these interrupts may

be raised (viz., initiated) from within the Kernel. A deci-

sion was made to not classify these handlers as "extended

instructions" since they are only executed as the result of

a physical or virtual interrupt and as such cannot be di-

rectly invoked (viz., "called") by any module in the system.
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&summary of the databases atilized by Kernel nodules is

I presented in Figure 11.
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Sequent Manager CreateSegment* DeleteSegaents

BakeKnovn* Terminate*

SIISvap_ln* SMSapOut*

Event Manager Read* Ticket*

Advance* Avait*

Non-Discretionary ClassEQ ClassGE
Security

Traffic Controller TCAdvance TCkvait

Process-Class

Inner Traffic Signal wait
Controller

Svap_¥DBR Idle

SetPreempt Test_Preempt

Running_VP

Distributed MRCreate_Entry KK_Delete_Entry
Memory Manager

RM _ctivate Rd-Deactivate

5_Suap_In NI_Svap_Out

Non-Distributed CreateEntry DeleteEntry
Memory Manager

Activate Deactivate

Swap_In SwapOut

* Denotes user visible instructions

Figure 10: Extended Instruction Set
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AU1 ~AMAU

Gate Keeper Parameter Table

Sequent Manager Knovn_.Segentjable (KST)

Traffic Controller kctive-.Process..Table (IPT)

inner rraffic Virtual.Processor..able (VPT)
Controller

Remory...Management..Unit Image
(KAU)

Memory Manager Global..&ctive_.Segaeftable (GiST)

LocalikctiveSegnentTable (LAkST)

DiskBit.Map

Global..Memory_.Bit_Ma p

Local_.Meao ryfiit.Ma p

Figure 11: Kernel Databases
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Chapter VIII

SYSTB HARDWARE

Level 0 of the SASS consists of the system hardware.

This hardware includes: 1) the CPU, 2) the local memory, 3)

the global memory, 4) the secondary storage (viz. hard

disk), and 5) the I/O ports connecting the Host computer

systems to the SASS. Since the SASS design allows for a

multiprocessor environment, there may exist multiple CPU's

and local memories. The target machine selected for the in-

itial implementation of the system is the Zilog Z8001 micro-

processor (22]. The Z8001 is a general purpose 16-bit, re-

gister oriented machine that has sixteen 16-bit general

purpose registers. It can directly address 8H bytes of me-

mory, extensible to 481 bytes. The Z8001 architecture sup-

ports memory segmentation and two-domain operations. The

memory segmentation capability is provided externally by the

Zilog Z8010 Memory Management Unit (MMU). The Z8010 MHU

(23] provides management of the Z8001 addressable memory,

dynamic segment relocation, and memory protection. Memory

segments are variable in size from 256 bytes to 64K bytes

and are identified by a set of 64 Segment Descriptor Regis-

ters, which supply the information needed to map logical me-

mory addresses to physcal memory addresses. Each of the 64
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Descriptor Registers contains a 16-bit base address field,

an 8-bit limit field, and an 8-bit attribute field. Unfor-

tunately, the Z8001 hardware was not available for use dur-

ing system development. Therefore, all work to date has

been completed through utilization of the Z8002 non-segment-

ed version of the Z8000 microprocessor family [22]. The ac-

tual hardware used in this implementation is the Advanced

M icro Computers km96/4116 MonoBoard Computer [1] containing

the AmZ8002 sixteen bit non-segmented microprocessor. This

computer provides 32K bytes of on-board RAN, 8k bytes of

PROM/ROM space, two RS232 serial I/O ports, 24 parallel 1/0

lines, and a standard INTEL Multibus interface. The general

* structure of the design has been preserved by simulation of

the segmentation hardware in software. This software RHU

Image (see Figure 12) is created as a database within the

Inner Traffic Controller.

The MHU Image is a processor-local database indexed by

DBRNo. Each DBRHo represents one record within the MAU

Image. Each record is an exact software copy of the Segment

Descriptor Register set in the hardware MAU. Each element

of this software MMU Image is in the same form utilized by

the special I/0 instructions to load the hardware MAU. Each

DBR record is indexed by segment number (Segmentlo). Each

SegmentVo entry is composed of three fields: Basekddr,

Limit, and Attributes. BaseAddr is a 16-bit field which

contains the base address of the segment in physcal memory.
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DBR20 ---- --- >

------------------------------------------------------------------------------------
B asekddr ILimit IAttributes I

----------- I------------- I
segment IIa

No. I-----------I------- ------------ I

----- a------------- 

---------------- ------- -----------
IFI

(entries for one DBE #)

Figure 12: Memory Management Unit (850) Image
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Limit is an 8-bit field that specifies the numaber of conti-

guous blocks of memory occupied by the segment. Attributes

is an 8-bit field representing the eight flags which specify

the seqment's attributes (e.g., "read", "execute"9, "vrite",
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4 Chapter 11

S UBR!I An extended overview of the current SASS design has been

presented. The four major levels of abstraction comprising

the SASS system have been identified, and the major compo-

nents of each level have been discussed. The extended in-

* struction set provided by the SASS Kernel was also defined.

The actual details of this implementation are described by

Strickler (191.
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PART C

THE DESIGN AND IMPLEIEXTATION OF THB M EORY
MANAGER FOR & SECURE ARCHIVAL STORAGE SYSTEM

This section contains updated excerpts from a Naval Postgra-
duaduate School MS Thesis by E. E. Moore and A. V. Gary (5].
The origins of these excerpts are:

INTRODUCTION from Chapter I
MEMORY MANAGER PROCESS DETAILED DESIGN from Chapter III
STATUS OF RESEARCH from Chapter IV

Minor changes have been made for integration into this report.
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Chapter r

INTRODUCTIOU

This thesis addresses the design and partial implementa-

tion of a memory manager for a member of the family of se-

cure, distributed, multi-microprocessor operating systems

designed by Richardson and O'Connell [7]. The memory manag-

er is responsible for the secure management of the main me-

mory and secondary storage. The memory manager design was

approached and conducted with distributed processing, multi-

processing, configuration independence, ease of change, and

internal computer security as primary goals. The problems

faced in the design were:

1) Developing a process which would securely man-

age files in a multi-processor environment.

2) Ensuring that if secondary storage was inadver-

tantly damaged, it could usually be recreated.

3) Minimizing secondary storage accesses.

4) Proper parameter passing during interprocess

communication.

5) Developing a process with a loop-free structure

which is configuration independent.
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6) Designing databases which optimize the memory

management functions.

The proper design and implementation of a memory manage-

ment process is vital because it serves as the interface

between the physical storage of files in a storage system

and the logical hierarchical file structure as viewed by the

user (viz., the file system supervisor design by Parks [9].

If the memory manager process does not function properly,

the security of that system cannot be guaranteed.

The secure family of operating systems designed by Rich-

ardson and O'Connell is composed of two primary modules, the

supervisor and the security kernel. A subset of that system

was utilized in the design of the Secure Archival Storage

System (SASS) . The design of the SASS supervisor was ad-

dressed by Parks (9], while the security kernel was ad-

dressed concurrently by Coleman (2]. T~ie SASS security ker-

nel design is composed of two parts, the distributed kernel

and the non-distributed kernel. The design of the distribut-

ed kernel was conducted by Coleman [2], and processor man-

agement was implemented by Reitz (12]. Zhis thesis presents

the design and implementation of the non-distributed kernel.

'4 In the SASS design, the non-distributed kernel consists

* solely of the memory manager*

* The design of the memory manager and its data bases was

completed. The initial code was written in PLZ/STS, but

could not be compiled due to the lack of a PLZ/SYS compiler.
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k thread of the high level code was selected, hand compiled

into PLZ/ASN, anid ran on the Z8000 developmental nodule.
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Chapter XI

MEMOR MAIAGER PROCESS DETAILED DESIGN

A. XIZM12T2GU2
The memory manager is responsible for the management of

both main memory (local and global) and secondary storage.

* It is a non-distributed portion of the kernel with one memo-

ry manager process existing per physical processor. The me-

mory manager is tasked (via signal and wait) to perform me-

mory management functions on behalf of other processes in

the system. The major tasks of the memory manager are : I)

the allocation and deallocation of secondary storage, 2) the

allocation and deallocation of global and local memory, 3)

segment transfer from local to global memory (and vice ver-

sa), and 4) segment transfer from secondary storage to main

memory (and vice versa). There are ten service calls (via

signal) which task the memory manager Process to perform

these functions. The ten service calls are:

CREATEENTRY
DELETEENTRY
ACTIVATE
DEACTIVATE
SWAP_IN
SVAP OUT
DEACTIVAT EALL*
O VETOG LOBAL*
5OVE_TOLOCALS
UPDATE*
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Upon completion of the service request. the memory manager

j returns The results of the operation to the waiting process

(via signal). it then blocks itself until it is tasked toI perform another service. The hardware configuration managed

by the memory manager process is depicted in Figure 13. The

shared data bases used by all memory manager processes are

the Global Active Segment Table (GAisr), the Alias Table,

the Disk Bit ap, and the Global memory Bit Hap. The proces-

sor local data bases used by each process are the Local kc-

tive Segment Table (L AST),* the Memory Management Unit Imag-

es and the Local Memory Bit gap.

*In the current state these service calls are not implemented;
therefore, there are currently six service calls.

-58-



Sam

%4 

U

222 L3

CA 0
106I

ccI
C.I
NZ/

/1

IAU

Figue 1: SAS HV SstemO~evia
cc9



B. DUll~fl trUIrLfhlIlk ])r, , oU

Several factors were identified during the design of the

memory manager process that refined the initial kernel de-

sign of Coleman [2]. The two areas that were modified@ were

the management of the HNU images and the management of core

memory. Both of these functions were managed outside of the

memory manager in the initial design. The inclusion of

these functions in the memory manager process significantly

improved the logical structure of the overall system de-

sign. Additional design parameters were established to fa-

cilitate the initial implementation. These design parame-

ters need to be addressed before the detailed design of the

memory manager process is presented.

It was decided to make the block/page size of both main

memory and secondary storage equal in size. This was to sim-

plify the mapping algorithm from secondary storage to main

memory (and vice versa). In the initial design the block/

page size was set to 512 bytes.

The size of the page table for a segment was set at one

page (non-paged page table). This was to simplify implemen-

tation, and had a direct bearing on the maximum segment size

supported in the memory manager. For example, a page size

of 256 bytes will address a maximum segment size of 32,768

bytes, while a page size of 512 bytes will address a segment

size of 131,072 bytes.

- 60 -



The size of the alias table was set to one page

(non-paged alias table). The number of entries that the

alias table will support is limited by the size of the page

table (viz., a page size of 512 bytes will support Up to 42

entries in the Alias Table).

In the original design, the main memory allocation was

external to the memory manager. This was due to the parti-

tioned memory management scheme outlined by Parks (9] and

Coleman (2]. in the current design, all address assignment

and segment transfer are managed by the memory manager. This

design choice enhanced the generality of the design, and

provided support for any memory management scheme (either in

the memory manager or at a higher level of abstraction).

However, the current design still has a maximum core const-

raint for each process.

Dynamic memory management is not implemented in this de-

sign. Each process is allocated a fixed size of physical

core. However, it is not a linear allocation of physical

memory. The design supports the maximum sharing of segments

in local and global memory. All segments that are not

shared, or shared and do not violate the readers/writers

problem will reside in local memory to eliminate the global

bus contention. The need to compact the memory (because of

fragmentation) should be minimal in this design due to the

maximum sharing of segments. If contiguous memory is not

available, the memory manager wi.ll compact main memory. Aft-

er compaction, the memory can be allocated.
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The design decision to represent memory as one

contiguous block (not partitioned) was made to support a dy-

namic memory management scheme. Vithout dynamic memory man-

agement, the process$ total physical memory can not exceed

the systems main memory. The supervisor knows the size of

the segments and the size of the pcocess' virtual core,

therefore it can manage the swap in and swap out to ensure

that the process$ virtual core has not been exceeded.

In the original design, the useres process inner-traffic

controller maintained the software images of the memory man-

agement unit. This design required the memory manager to re-

turn the appropriate memory management data (viz.,segment

location) to the kernel of the userls process. In the cur-

rent design, the software images of the ABU are maintained

by the memory manager. A descriptor base pointer is provid-

ed for the inner-traffic controller to multiplex the process

address spaces. The ABU image data base does not need to be

locked (to prevent race conditions) due to the fact that

process interrupts are masked in the kernel. Thus, if the

memory manager (a kernel process) is running then no other

process can access the M5U image.

The system initialization process has not been addressed

to date. However, this design has made some assumptions

about the initial state of the system. Since the memory

manager handles the transfer of segments from secondary sto-

raqe to main memory, it is likely to be one of the first
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processes created. The memory manager's core image will con-

sist of its pure code and data sections. The minimal ini-

tialization of the memory aanager's data bases are entries

for the system root and the supervisor's segments in the

GAST and LAST(s), and the initializaton of the KRU images

with the kernel segments. The current design does not call

for an entry in the GAST or LAST for the kernel segments.

However, when system generation is designed this will have

to be readdressed.

The original [2] memory manager databases have been re-

fined by this thesis to facilitate the memory management

functions. The major refinements of the global and local ac-

tive segment tables are outlined in the following section.

C. mi iisz

The Global Active Segment Table (see Figure 14) is a

system wide, shared data base used by memory manager pro-

cesses to manage all active segments. A lock/unlock mechan-

ism is utilized to prevent any race conditions from occur-

ring. The signalling process locks the GAST before it

signals the memory manager. This is done to prevent a dead-

ly embrace from occurring between memory manager processes,

and also to simplify synchronization between memory manag-

ers. The entire GAST is locked in this design to simplify

the implementation (vice locking each individual entry).
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Figure 1': Global Active Segment Table
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The GAST size is fixed at compile time. The size of

the GAST is the product of the GAST record size, the maxi-

mum number of processes and the number of authorized known

segments per process. Although the G_&ST is of fixed size,

it is plausible to dynamically manage the entries as pro-

posed by Richardson and O'Connell (7]. The current memory

manager design could be( extended to include this dynamic

management.

The OniqueId field is a unique segment identification

number in the GAST. This field is four bytes wide and will

provide over four billion identification numbers. A design

choice was made not to manage the reallocation of the uni-

gueid's. Thus when a segment is deleted from the system,

the uniqueid is not reused.

The Global-Address field is used to indicate if a seg-

ment resides in global or local memory. If not null, it con-

tains the global memory base address of a segment. A null

entry indicates that the segment might be in local memo-

ry (s).

The ProcessorsL-ASTE-# field is used as a connected

processors list. The field is an array structure, indexed

by Processor-Id. It identifies which LAST the segment is

active in, and provides the index into each of these tables.

The design choice of maintaining an entry in the LAST for

all locally active segments implies that if all entries in

the ProcessorsL_&STE_# field are null, the segment is not
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active and can be removed from the GAST (viz., no proces-

sors are connected).

The Flag_Bits field consists of the written bit, and

the writable bit. The written bit is set when a segment is

swapped out of memory, and the N U image indicates that it

has been written into. The writable bit is set during seg-

sent loading to indicate that sone process has write access

to that segment.

If an active segment is a leaf, the GASTE_#_Parent

field provides a back pointer to the GAST index of its pa-

rent. This back pointer to the parent is important during

the creation of a segment. If a request is received to

create a segment which has a leaf segment as its parent,

then an alias table has to be created for that parent.

Also, the alias table of the parent's parent needs to be up-

dated to reflect the existence of the newly created alias

table (sea Figure 15). The indirect pointer shown is the

back pointer to the parent via the GAST.

The Vo_kctiveln_Memory field is a count of the number

of processes that have the segment in global memory. It is

used during swap out to determine if the segment can be re-

moved from global memory.

The No_&ctiveDependents field is a count of the number

of active leaf segments that are dependent on this entry

(viz., require that this segment remain in the G_AST). Each

time a process activates or deactivates a dependent segment

this field is incremented or decremented.
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Figure 15: Alias Table Creation
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The Size field is the size of the segment in bytes. The

PageTable-location field is the disk location of the page

table for a sequent, and the Alias_TableLocation field is

the disk location of the alias table for the segment. The

AliasTable field can be null to indicate that no alias ta-

ble exists for the segment.

The last three fields are used in the management of ew-

entcounts and sequencers [12]. The Sequencer field is used
to issue a service number for a segment. The Instance-1

field and Instance_2 field are eventcounts (i.e., are used

to indicate the next number of occurances of some event).

2. Lg lg J, ;in seqent Zl.1t

The Local Active Segment Table (see Figure 16) is a

processor local data base. The LAST contains the character-

istics (viz., segment number, access) of each locally active

segment. An entry exists for each segment that is active in

a process "loaded" on this CPU and in local memory. The

first fiell of the L-AST contains the memory address of the

segment. If the segment is not in memory, this field is

used to indicate whether the LAST entry is available or ac-.4

tive. The Segment_No/kccess field is a combination of seg-

ment number and authorized access. It is an array of records

data structure that is indexed by DBR_#. The first record

element (viz.,most significant bit) is used to indicate the

access (read or read/write) permitted to that segment. The

- 68 -



second record element (viz., the next seven bits) is used to

indicate the segment number. A null segment number indi-

cates that the process does not have the segment active.

Index_#

Memory Segment_#/Accesskuth

k ddr DBR_O DBR 1 DBR_2 DBR_3 DBR_4 DBR_5

Figure 16: Local Active Segment Table

3iA1. Zhl
.3.

The alias table (see Figure 17) is a memory manager data

base which is associated with each non leaf segment in the

kernel. An aliasing scheme is used to prevent passing sys-

teavide information (uniqueid.) out of the kernel. Seg-

ments can only be created through a mentor segment and entry
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number into the mentor's alias table. when a segment is

created, an entry must be made in its mentor segaentts alias

table. Thus the mentor segment must be known before that

segment can be created.

Entry_#

-------------------------------------------------------
Unique_ID | Size I Class I Page rable 1 Alias Table I

1 I| I I Location | Location
I----------------------------------------------------

II I I I I
III I I I
VIi I I II

II I II
II I I II
II I I I1
II I I II

Figure 17: Alias Table

The alias table consists of a header and an array struc-

ture of entries. The header has two "pointers" (viz., disk

addresses|, one that links the alias table to its associated

sequent and one that links the alias table to the mentor

sequent's alias table. The header is provided to support the

re-construction of the file system after a system crash due
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to device I/0 errors. It is not used at all during normal

operations. Each entry in the array structure consists of

five fields for identifying the created segments. The Gni-

que_Id field contains the unique identification number for

the segment. The Size field is used to record the size of

the segment. The Class field contains the appropriate secur-

ity access class of the segment. The PageTable_Location

field has the disk address of the page table. A null entry

indicates a zero-length segment. The aliasTableLocation

field has the disk address of the alias table for the seg-

sent. A null entry indicates that the segment is a leaf

segment.

4. 52220 MU M= W LuAI

The 3emory Management Unit Image (HfU_Isage) is a pro-

cessor local data base. It is an array structure that is in-

dexed by the DBR_#. Each NBU_Image (see Figure 18) includes

a software representation of the segment descriptor regis-

ters (SDR) for the hardware KAU [23]. This is in exactly

the format used by the special I/O instructions for loading/

unloading the HU hardware. The SDR contains the

Base_Address, Limit and Attribute fields for each loaded

segment in the process' address space. rhe BaseAddress

field contains the base address of the segments in memory

(local or global). The Limit field is the number of blocks

of contiguous storage for each segment (zero indicates one
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block). rhe Attribute field contains eight flags. Five

flags are used for protecting the segment against certain

types of access, two encode the type of accesses made to the

segent (read/write), and one indicates the special struc-

ture of the segment (23]. Five of the eight flags in the

attribute field are used by the memory manager. The "system

only" and "execute only" flags are used to protect the code

of the kernel from malicious or unintentional modifications.

The "read only" flag is used to control the read or write

access to a segment. The "change" flag is used to indicate

that the segment has been written into, and the "CP-inhi-

bit" flag is usel to indicate that the segment is not in me-

mory.

The last two fields of the 80_Image are the Block-Used

field and the maximusvailableBlocks field. These two

fields are used in the mangement of each process' virtual

core and are not associated with the hardware MNU.
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DBR-# ....... >

Blocks Used
----------------- -- - -- - -

max Avail Blocks

Segment I BaseAddr I LimitI Attributes I

------------------------------I-I

one record / DBR_#

Figure 18: memory management Unit Image
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All of the memory allocation/deallocation bit maps (see

Figure 19) are basically the same structure. Secondary sto-

rage, global memory and local memory are managed by memory

bit maps. The DiskPt_dap is a global resource that is

protected from race conditions via the locking convention

for the G_&ST. tach kit in the bit nap is associated with a

block of seconds.,. itorage. A zero indicates a free block

of storage while a obe indicates an allocated block of sto-

rage. The G'.obIsKemoryitIap is used to manage global me-

mory. It is a shared resource that is protected from race

conditions by the locking of the GAST. The Lo-

calNemoryBitnap is the same structure as the Glo-

bal_HeaoryBitMap and is used to manage local memory. The

Localdemory_BitMap is not locked since it is not a shared

resource between memory managers.
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Memory Bit Hap

222222222

Paqe 0 1 2 3 4 5 6 7 8 9 1 1 1 1 1 .... 4 4 4 5 5 5 5 5 5
0123 4 78 9012 34 5

4

Figure 19: Memory Allocation/Deallocation Hap

D. 142& ZlqIl2U

The detailed source code for the basic functions and

main line of the memory manager is presented in Appendix J.

In the discussion of the memory manager design, a pseu-

do-code similar to PLZ/SYS is utilized. The rationale for

using this pseudo-code was to provide a summary of the memo-

ry manager source code, and to facilitate the presentation

of this design.

It is assumed that the memory manager is initialized

into the ready state at system generation (as previously

mentioned). When the memory manager is initially placed

into the running state, it will block itself (via a call to
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the kernel primitive Wait). Wait will return a message from

a siqnalling process. This message is interpreted by the me-

mory manager to determine the requested function and its re-

quired arguments. The function code is used to enter a case

statement, which directs the request to the appropriate me-

mory manager procedure.

When the requested action is completed, the memory man-

* ager returns a success code (and any additional required

data) to the signalling process via a call to the kernel

primitive Signal. This call will awaken the process which

requested the action to be taken, and place the returned

message into that process@ message queue. When that action

is completed, the memory manager will return to the top of

the loop structure and block itself to wait for the the next

request. The main line pseudo-code of the memory manager

process is displayed in Figure 20.
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ENTRY
INITIALIZEPROCE SSORLOCALVRI ABLES
DO

I CHECK_I F_MSGQU EUZ_EMPTY I
VP_ID, MSG :* WAIT
FUNCTION, ARGUMENTS := VALIDATEMSG (MSG)
IF FUNCTION

CASE CREATE_ENTRY THEN
SUCCESSCODE :- CREATE3NTRY (ARGUMENTS)

CASE DELETE-ENTRY THEN
SUCCESS CODE :- DELETEENTRY (ARGUMENTS)

CASE ACTIVATE THEN
SUCCESS CODE := ACTIVATE (ARGUMENTS)

CASE DEACTIVATE THEN
SUCCESSCODE := DEACTIVATE (ARGUMENTS)

CASE SWAP_IN THEN
j SUCCESS-CODE := SWAPIN (ARGUMENTS)

CASE SVAPOUT THEN
SUCCESS CODE :- SWAPOUT (ARGUMENTS)

CASE DEACTIVATEALL THEN
SUCCESS-CODE := DEACTIVATEALL (ARGUMENTS)

CASE MOVE_TOGLOBAL THEN
SUCCESS-CODE := MOVETOGLOBAL (ARGUMENTS,

CASE MOVETOLOCAL THEN
SUCCESSCODE := MOVETOLOCAL (ARGUMENTS)

CASE UPDATE THEN
SUCCESS-CODE :0 UPDATE (ARGUMENTS)

FI
SI3NAL (VP_ID, SUCCESS-CODE, ARGUMENTS)

OD
END HEMORYANAGERPLZ/SYS NODULE

Figure 20: Memory manager Mainline Code
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CreateEntry is invoked when a user desires to create a

segment. I segment is created by allocating secondary sto-

rage, and by making an entry (unique id, secondary storage

location, size, classification) into it's mentor segment's

alias table. This implies that the mentor segment must have

an alias table associated with it, and that the mentor seg-

sent must be active in order to obtain the secondary storage

location of the alias table.

The mentor segment can be in one of two states. It may

have children (viz., have an alias table), or it may be a

leaf segment (viz., not have an alias table). If the sentor

segment has children, it has an alias table and this alias

table can be read into core, secondary storage can be allo-

cated, and the data can be entered into the alias table. If

the mentor segment is a leaf, an alias table must be created

for that segment before it (the alias table) can be read

into core and data entered into it (see Figure 15).

The pseudo-code for CREATEENTRT PROCEDURE is presented

in Figure 21. The arguments passed to Create_Entry are the

index into the G AST for the mentor segment, the entry num-

ber into its alias table, the size of the segment to be

created, and the security access class of that segment. The

return parameter is a success code, which would be

"seqcreated" for a successful segment creation.
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CREATE_ENTRY PROCEDURE (PAR_INDEX WORD, ENTRY_# WORD,
SIZE WORD, CLASS BYTE)

RETURNS (SUCCESS_CODE BYTE)
LOCAL ELKS WORD, PAGETABLE_LOC WORD
ENTRY
IF ALIASTABLE_DOESNOT_EXIST THEN

SUCCESSCODE :- CREATEALIAS_TABLE
IF SUCCESS_CODE <> VALID THEN RETURN

?I 
FI

BLKS := CALCULATE_NO_BLKSREQ (SIZE)
SUCCESS-CODE := READALIAS_TABLE (

GAST[ PAR_INDEX ]. ALIASTABLELOC)
IF SUCCESSCODE <> VALID THEN RETURN
FI
SUCCESS-CODE -= CHECKDUPENTRY I in alias table I
IF SUCCESS-CODE <> VALID THEN RETURN
Fi
SUCCESS CODE, PAGETABLELOC := ALLOC_SEC STORAGE (ELKS)
IF SUCCESSCODE <> VALID THEN RETURN
FI
UPDktE_&LIAS_TABLE(ENTRY_#, SIZE, CLASS, PAGETABLELOC)
SUCCESS-CODE := WRITEALIASTABLE (

G_AST( PkR_INDEX ]. ALIAS_TABLELOC)
IF SUCCESSCODE <> VALID THEN RETURN
ELSE SUCCESSCODE := SEG CREATED
F1

END CREATEENTRY

Figure 21: Create Entry Pseudo-code
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When invoked, Create_Entry will determine which state

the mentor segment is in (viz., if it has an alias table).

If an alias table does not exist for the mentor segment, one

is created and the alias table of the mentor segment's pa-

rent is updated. The alias table is read into core and a

duplicate entry check is made. If no duplicate entry exists,

the segment size is converted from bytes to blocks, and the

secondary storage is allocated for non-zero sized segments.

The appropriate data is entered into the alias table and the

alias table is then written back to secondary storage.

2. 2t2 An k1W TakL SnAz

fDelete-Entry is invoked when a user desires to delete a

segment. k segment is deleted by deallocating secondary

storage, and by removing the appropriate entry f±Z% the ali-

as table of its mentor segment (the reverse logic of

CreateEntry). This implies that the mentor segment must be

active at the time of deletion. There are three conditions

that can be encountered during the deletion of a segment:

the segment to be deleted may be an inactive leaf segment,

an active leaf segment, or a mentor segment.

If the segment to be deleted is an inactive leaf segment

(viz., has been swapped out of core, and does not have an

entry in the GAST), the secondary storage can be deallocat-

ed and the entry deleted from the mentor segaent's alias ta-

ble. If the segment is an active leaf segment, the segment
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must first be swapped out of core and deactivated before it

can be deleted. This entails signalling the memory manager

of each processor, in which the segment is active, to swap

out and deactivate the segment.

If the segment to be deleted is a mentor segment, an

alias table exists for that segment . If the alias table is

empty, the secondary storage for the alias table and the

segment can be deallocated, and the entry for the deleted

segment can be removed from its mentor's alias table. If the

alias table contains any entries, the segment cannot be de-

leted because these entries would be lost. If this condition

is encountered a success code of "leafsegmentexists" is

returned to the process whict,.: requested to delete the entry.

Due to a confinement problem in "upgraded" segments, this

Success-code cannot always be passed outside of the kernel.

This implies that the segment manager must strictly prohibit

deletion of a segment with an access class not equal to that

of the process.

The pseudo-code for DELETEEVTRY_PROCEDURE is presented

in Figure 22. The parameters that are passed to this proce-

dure are the parent's index into the G-&ST and the entry
I

number into the parent's alias table of the segment to be

deleted. The alias-table-loc field is checked to determine

the state of the mentor segment (either a leaf or a node),

and the appropriate action is then taken. A success code is

returned to indicate the results of this procedure.
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DELETEENTRY PROCEDURE ( PARINDEX WORD, ENTRY_# WORD )
RETURNS (SUCCESSCODE BYTE)
LOCAL PARINDEX WORD
ENTRY

I Check if the passed mentor seguent has an alias table. I
IF GAST[PARNDUEX].ALAS_TABLZELOC <> NULL

SUCCESSCODE :Z READALIASTABLE (
G_A ST PAR_1INDEX].ALIASTABLE_LOC)

ELSE
SUCCESS-CODE NO-CHILD-TO-DELETS

'I
IF SUCCESSCODE <> VALID THEN RETURN

I Determine if segment has children in alias table I
* IF ALIAS_TkBLENOTEKPTY THEN

SUCCESS-CODE :- LEAFSEGRENTEXISTS
RETURN I Deletion will delete children I

ELSE
I Search GAST with UNIQUEID to verify segment inactive I

IF ACTIVE ING AST THEN
I Check if active in AST I
IF ACTIVEINLAST THEN

DEACTIVATEALL (GASTINDEX, L_kST_INDEX)
F'

I Check GAST to verify segment inactive in other L_&ST's :
IF ACTIVEINOTHERLAST THEN

SIGNALTODEACTI VATEALL (G_kS T_INDEX|
FI

FI
FREE_SECSTOR AGEOF SEG_&_kLIAS_IF_EXISTS
DELETEkLIASTABLEENTRY

F'
DELETE_ALIASTABLEENTRY
SUCCESS-CODE := WRITE_&LIAS_TABLE (

G_kST PkR_INDEX ] .ALIASTABLELOC)
IF SUCCESS-CODE = VALID THEN

SUCCESS-CODE := SEG-DELETED
FI

END DELETEENTRY

.4

Figure 22: Delete Entry Pseudo-code
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3. Agjuijjn I u ga
Activate is invoked when a user desires to sake a seg-

ment known by adding a segment to his address space. A seg-

sent is activated by making an entry into the LAST for that

processor, and the GAST. The activated segment could be in

one of three states; it could have previously been activated

by another process and have a current entry in both the

GAST and LAST, it could have previously been activated by

another process on a different processor and have an entry

in the GAST but not the LAST, or it could be inactive and

have an entry in neither the GAST nor the LAST.

If the segment to be activated already has entries in

both the LAST and GAST, these entries need only be updated

to indicate that another process has activated the segment.

The segment number is entered into the Seg-

sent Vo/AccessAuth field of the LAST, and if the segment

is a leaf, its mentor's Vo_kctive_Dependents field in the

GAST is incremented. In this design, the GAST is always

searched to determine if the segment has been previously ac-

tivated by another process.

If the segment to be activated has an entry in the GAST

but not the LAST, an entry must be made in the LAST and

the G AST must be updated. The LAST is searched to deter-

mine an available index. The segment number is entered into

the L AST, and the index number is entered into the GAST

- 83 -



ProcessorsL_kSTE_# field. If the segment to be activated is

a leaf segment, its mentor's No_ActiveDependents field in

the GAST is incremented.

If the activated segment does not have an entry in eith-

er the G_kST or LAST, an entry must be made in both. The

G_kST is searched to find an available index, and the entry

is made. The LAST is then searched to find an available in-

dex, and the entry is made. The LAST index is then entered

into the GkST Processors_L_ASTE_# field. If the activated

seqment is a leaf, the NokctiveDependents field of its

mentorts GAST entry is incremented.

The pseudo-code for ACTIVATE PROCEDURE is presented in

Figure 23. The parameters that are passed are the DBR_# of

the signalling process, the mentor segment's index into the

G_AST, the alias table entry number, and the segment number

of the activated segment. The mentor segment is always

checked to determine if it has an associated alias table. If

it does not, the success code of "alias-doesnot~exist" is

returned. If the alias table does exist, it is read into

core and the entry number is used as an index to obtain the

activated segment's uniqueid. The GAkS is then searched

to determine if the segment has already been activated. If

the uniqueid is found, the GAST is updated and the LAST

is either updated or an entry is made (depending on whether

an entry existed or not). If the uniqueid of the segment

was not found during the search of the GAST, an entry must
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be made in both the G-iST and L-AST. Activate returns the

activated segment'sa classification, size, and handle to the

signalling process.
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ACTIVATE PROCEDURE (DBR_# BYTE, PARINDEX NORD,
ENTRY # WORD, SEGSENTNO BYTE)

RETURNS (SUCCESSCODE BTTE, RET_G_ASTHANDLE HANDLE,
CLASS BYTE, SIZE WORD)

LOCAL G_INDEX WORD, L_INDEl WORD
ENTRY

I Verify that passed segment is a mentor segment I
IF G_AST[P&INDEX].ALIAS_TABLELOC <> 0 THEN

SUCCESS-CODE :0 READ_kLIAS_TABLE (
G_ST[ PAR_INDZX ]. ALIAS_TABL&_LOC)ELSE

ESSUCCESS-CODE :- ALIASDOESNOTEXIST
FI
IF SUCCESS-CODE <> VALID THEN RETURN
F'

I Check G-AST to determine if active I
SUCCESSCODEINDEX :a SE&RCHG_kST (UNIQUE_ID)
IF SUCCESS-CODE = FOUND THEY

IF SEGENTIN_LAST THEN
UPDATE_LAST (SEGRENTNO)

ELSE
MAKELASTENTRY (DBR_#, SEGRENT_NO)
UPDATEGAST (L_NDEI)
IF G_ST[INDEX].ALIAS_TABLE LOC = NULL THEN

GkAST[PAR_INDEX ].NODEPENDETSACTIVE += 1
FI -

ELSE
F I

MAKEG_ASTENTRY (ENTRY#)
aAKE_L_ASTENTRY (PARINDEZX, ENTRY_#)

FI

SUCCESS-CODE := SEGACTIVATED
END ACTIVATE

Figure 23: Activate Pseudo-code
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Deactivate is invoked when a user desires to remove a

segment from his address space. To deactivate a segment,

the memory manager either removes or updates an entry in

both the LAST and G-AST. Deactivate uses the reverse logic

of activate. Once a segment is deactivated, it can only be

reactivated via its mentor's alias table as discussed in ac-

tivate. If a process requests to deactivate a segment which

has not been swapped out of the process' virtual core, the

memory manager swaps the segment out and updates the ABU im-

age before the segment is deactivated. The segment to be

deactivated could be in one of three states; more than one

process could concurrently hold the segment active in the

L_IST, the segment could be held active by one process in

the LAST and more than one in the G_AST, the segment could

be held active by only one process in both the LAST and the

G_AST.

Deactivation of leaf segments and mentor segments are

handled differently. If the segment is a mentor segment and

has active dependents, it cannot be removed from the GkST

(even though no process currently has that segment active).

This is based on the design decision which requires that the

mentor of all active leaf segments remain in the GASr to

allow access to its alias table. The mentor's alias table

must be accessible when an alias table is created for a de-
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pendent leaf segment. If a leaf segment is deactivated, the

No.ActiveDependents field of its mentorls GST entry is

decremented. A mentor segment can only be removed from the

GAST if no process holds it active, and it has no active

dependents.

If more than one process concurrently hold a segment ac-

tive in the LAST, and one of them signals to deactivate

that segment, the entry in the LkST is apdated. This is ac-

complished by nulling out the Segmentgo/AccessAuth field

of the L&ST for the appropriate process. If required, the

No_kctiveDependents field of its mentor segmentfs GkST en-

try is decremented.

If only one process holds the segment active in the

LAST, and that Process signals to deactivate the segment,

the LST entry for that segment is removed. The Proces-

sorsLASTE t is updated and checked to determine if there

are other connected processors. If there are no other con-

nected processors and the segment has no active dependents,

the segment is removed from the GAST. If there are other

connected processors, the G_&ST is updated. If the deacti-

vated segment is a leaf, the mentor segment's

NokctiveDependents field in the GQST is decremented.

The pseudo-code for DEACTIVATE PROCEDURE is presented in

Figure 24. The parameters that are passed to the memory man-

ager are the DBR_# of the signalling process, and the index

into the GAST for the segment to be deactivated. The
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procedure first updates the LAST, and then removes the en-

try if no local process holds the segment active. The GAST

is then updated, and its mentor segment is checked (if the

deactivated segment was a leaf), to determine if it can be

removed. If no processes currently hold the segment active,

and it has no active dependents, the segment is removed from

the GAST.
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DEACTIVATE PROCEDURE (DBR_# BYTE, PAR_INDEX WORD)
RETURNS (SUCCESS 'CODE BYTE)

LOCAL INDEX WORD
ENTRY

I Check if segment is in core I
IF G_IST(INDEX].NO_ACTIVEINEEIORI <> 0 THEN

I Check 08U image to determine if in local memory IF IN_LOCALHEHfORr THEN
SUCCESS-CODE := OUT (DBR_#, INDEX)

Fl
F'

I Remove process segment_no entry in LAST I
L_ASTfLINDEX]SEGENTNO/CCESSAU!HDBR_#] = 0
CHECKIFACTIVEIN_LAST (LASTINDEI)
IF NOTACTIVE_IN LAST THEN

L_ASTELINDEX].MEEORADDR := AVAILABLE

I Check if deleted segment was a leaf I
IF G_AST[INDEXJ.GASTE_#_PAR <> 0 rMEN

G_AST(PARINDEX].NO_DBPENDENTSACTI!E -= I
I Determine if parent can be removed I

FI CHECKFORREmOVAL 
(PARINDEX)

I Determine if deactivated segment can be removed I
CHECKFOR_RUmOVAL (INDEX)
SUCCESS-CODE : SEGDEACTIVATED

END DEACTIVATE

Figure 24: Deactivate Pseudo-code
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SVAPIN is invoked when a user desires to swap a seg-

ment into main memory (global or local) from secondary sto-

rage. A segment is swapped into main memory by obtaining the

secondary storage location of its page table from the GAST,

allocating the required amount of main memory, and reading

the segment into the allocated main memory. The segment must

be active before it can be swapped into core, and the re-

quired main memory space must be available. Three conditions

can be encountered during the invocation or SWAP IN. The

segment can already be located in global memory, the segment

can already be located in one or more local memories, or the

segment may only reside in secondary storage.

If the segment is not in local or global memory, local

memory is allocated, the segment is read into the allocated

memory, and the appropriate entries are made in the HSU im-

age, the LAST and the GiST. If the segment is already in

global memory, it can be assumed that the segment is shared

and writable. In this case the only required actions are to

update the GAST and L_AST. The No_ActiveInaemory field of

the GAST entry is incremented, and the HSU image is updated

to reflect the swapped in segment's core address and attri-

butes.

If the segment already resides in one or more local me-

mories, it must be determined if the segment is "shared" and
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"writable". A segment is "shared" if it exists in more than

one local memory. A segment is "writable" if one process has

write access to that segment. If the segment is not shared

or not vritable and in local memory, the appropriate entries

are updated in the AMU image, the LAST, and the GAST. If

the segment does not reside in local memory, the required

amount of local memory is allocated, the segment is read

into the allocated memory, and the appropriate entries are

made in the 880 image, the LAST, and the GAST.

If the segment is shared, writable, and in local memory,

the segment must be moved to global memory. If the segment

is not in the memory manager's local memory, it signals

another memory manager to move the segment to global memory.

After the segment is moved to global memory, the memory man-

ager signals all of the connected memory manager's to update

their LAST and AMU data bases. when all local data bases

are current, the memory manager updates the GAST and re-

turns a success code of seg_activated.

The pseudo-code for SWP_IN PROCEDURE is presented in

Figure 25. The arguments passed to SWAPJN are the

G_AST_INDEI of the segment to be moved in, the process'

DBER#, and the access authorized. SWAP-IN will convert the

segment size from bytes to blocks, and verify that the pro-

cess' core will not be exceeded. If the virtual core will

be exceeded, a success code of "corespaceexceeded" will be

returned. If write access is permitted, the writable bit is
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set. Checks are then performed to determine the segment's

storage location (local or global), and the appropriate ac-

tion is taken.
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SWAP-IN PROCEDURE (INDEX WORD, DBR_# BYTE,
kCCESSAUTH BYTE)

* RETURNS (SUCCESSCODE BYTE)
LOCAL LINDEX WORD, ELKS WORD
ENTRYI EBLKS : = CALCULATEJIO._OFBLKS (GAkSZ( IVDEX]. SIZE)

* SUCCESS-CODE := CHECK-SAX-LIMEAR-CORE (BLKS)
4 IF SUCCESSCODE -VIRTUALLINEAR...COREFULL THEM

RETURN
F'
G AST( INDEX ]. NOSEGMENTS.,1NE10EY 1
Ii ACCESSAUTH = WRITE THEN

G_&ST(INDEX ].FLAG BITS := WRITABLEBITSET
F'

I Determine if segment can be put in local memory I
IF G -AST[INDBX].FLAGBITS IND IRITABLZE.BASK = 0
ORIF GASTCtNDEX].NQ..ACTIVE_N_EORY <( I THEN

I Determine if already in local memory I
CHECK-LOCALMENOR! (L.AST_3NDEX)
IF NOT1IN LOCAL MEMORY THEN

ALLOCATELOC!L_9EMOBY (ELKS)
READ-SEGMENT (PAGETABLELOC, BASBADDR)
LIST(LINDEX] :- BASEADDR

ELSE
IF NOTINGLOBALENORY THEN

UPDATEJIIU
U PDAT EL-AST
RETURN

ELSE
kLLOCATEGLOBALKEMORY (BLKS)
IF IN LOCAL NEMORY THEN

1072_ TO GLOBAL (LINDEX, BASEADDE, SIZE)
ELSE
SIGNkLOTHERNEOR.IAMAGERS (INDEX. EASEAkDDRI

F'
F'

F1
IPDATEMREU3MAGE (DBR_,SEG_#,ASZjDDRACCESS,BLKS)
UPDATELAkSTACCESS (LINDEX. ACCESS. DBR_#)

4 SUCCESS-CODE := SVAPPED..IN
*1END 51AP_1v

Figure 25: SvapIn Pseudo-code
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SAP_OaT is invoked when a user desires to move a seg-

ent out of core. A segment is swapped out of core by ob-

taining its secondary storage location, writing the segment

to that location (if required), and deallocating the main

memory used. The decision to write the segment is deter-

mined by the GAST written bit. This bit is set whenever the

segment has been modified. The segment to be swapped out

can be in one of two states: the segment can be in local

memory, or the segment can be in global memory.

If one process has the segment in local memory and the

written bit is set, the segment is written into seconda-y

storage and the local memory is deallocated. If the written

bit is not set, the local memory need only be deallocated.

If more than one process has thp segment in the same local

memory, the segment remains in coze. The appropriate SRU im-

age is updated to reflect the segments deletion and the

G_AST No Active_In_Neeory field is decremented.

All segments in global memory are shared and writable.

If a process requests the segment to be swapped out, the

segment remains in memory. The SRO image is updated to re-

flect the segment's deletion, and the GAST

NoActiveInResory field is decremented. If the

NoActiveInHemory indicates that one process has the seg-

ment in core, its memory manager is signalled to move the

segment to local memory.
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The pseudo-code for SWAP_OUT PROCEDURE is presented in

Figure 26. The arguments passed to SWP_OUT are the DBR_#

of the signalling process, and the GAST_INDEX of the seg-

ment to be removed. The return parameter is a success code.

SVkP_OUT removes the segment from the process's virtual

core, deletes the segment from its ABU image, and decrements

the No-ActiveInHeaory field. If the segment can be removed

from memory, it is determined which memory can be deallocat-

ed. If the segment has been modified, it is written back to

secondary storage and the appropriate memory deallocated.

If the seqent has not been modified, the appropriate memory

is deallocated. If after the deletion one process has the

segment in global memory, its memory manager need only be

siqnalled to move the segment to local memory. When

SWAP_OUT successfully completes, it returns a success code

of 'swapped out".
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SW&POUT PROCEDURE (DBR_# BYTE, INDEX WORD)
RETURNS (SUCCESS-CODE BYTE)
ENTRY
BLKS := GAST( INDEX ].SIZE / BLKSIZE
FREEPROCESSLINEARCORE (BLKS)
DELETENMUENTRY (DBR#. SEG_#)
G AST[ INDEX ]. MOSEGMNTSIN_11ZKOBY I=

I Determine if segment has been written into I
IF 55UIEAGE(DBE)J].SDR(SEG_#].ATTRIBUTES-IBITTEN THEN

1 If segment has been written into, update GAkST I
-AST(INDEX.FLAG_.BITS := WRITTEN

F'
I Determine if segment is in global memory I

* IF GkST(INDEX].GLOB&LADDR <> MULL THEN
IF GAST(INDE].NO_.SEGENTSNIEEORY - 0
ANDIF GAST(INDEJ.FLAG.BITS - WRITTEN THEN

WRITESEG (P&GE..TABE LOC, MEMORYADDR)
FREE-LOCkL-BITMAP (5 EAORY-ADDR, ELKS)

ELSE
IF G&kSTE INDEX ].N0.ACTITE_3NEORY = 0 THEN

FREE LOCALBITKAP (NERORYADDR, ELKS)
F'

Fl
ELSE I If not in global memory I

IF G_&ST(INDEXJ.NOACTIVE_3NEORY = 0
ANDIF G&kSTCINDEX].FLG_.BITS = WRITTEN THEN

VRITESEG (PAGETABLELOC, GLOBALADDR)
FREE-GLOBALBITK.AP (GLOBALADDR, ELKS)

ELSE
IF GAST(INDEZ ].NO._ACTIVE3INJERORIY = 0 THEN

FREE3GLOB&LBIT_MAP (GLOBALADDR, ELKS)
F'

F1
F1
SUCCESSCODE :SWAPPEDOUT

END SWAPOUT

Figure 26: SvapOut Pseudo-code
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DRACTIVATEkLL is invoked vhen it becomes necessary to

remove a segment from every process o address space. Each

process is checked to determine if the segment is active. If

a process has the segment active, it is deactivated from its

address space. The pseudo code for Deactivateall is illus-

I trated in Figure 27. The parameters passed to Deacti-

vate-all are the deactivated segentes G_AST index and the

L_&ST index. The L-AST is searched by DBR_# to determine

which process has the segment active. If the check reveals

that the segment is active, it is deactivated by calling

Deactivate. If the segment was successfully deactivated from

all processes, a successcode of valid is returned.

99
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DRACTIVLTEI LL PROCEDURE (INDEX WORD, L_NDRZ WORD)
RETURNS (SUCCESS-CODE 8TE)
ENTRI
LOCAL I BYTE

JI I := 0
i DO

IF I= 5AXDBR_# THEN
EXIT

pr
IF LAST( LINDX].SEGSMT_O/LCCESSAUTH 1

<>, ZERO THEY
SUCCESS-CODE := DEACTIVATE (1, ZNDEX)
IF SUCCESSCODE <> SEGDE&CTIV&TED THEY

RETURN

FI

OD
SUCCESS-CODE : VALID

END DEACTIV&TBRALL

Figure 27: Deactivate All Pseudo-code

-422 1122al 2 2"kl Buggy.

MOVETO-GLOBAL is invoked when it becomes necessary to

move a segment from local to global memory. If a segment re-

sides in one or sore local memories, and a process with

write access swaps that segment into coce, or if a segment

resides in in local memory |with write access) and another

process with read access requests the segment swapped in,

the segment is moved trom a local to global memory to avoid

a secondary storage access. if the segment resides in the

running memory manager's local memory, it will affect the
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segment transfer, otherwise it will signal another memory

manager of a connected processor to affect the transfer.

Figure 28 illustrates the pseudo-code for MOYE.T0GLOBAL.

Once the segment has been moved to global memory, the sig-

nalled memory manager will update the MU images for all

connected processes, and deallocate the freed local memory.

A success code of completed will be returned to the signall-

ing memory manager. The parameters passed to the memory

manager are the segmentfs LAST index the global memory ad-

dress of the move, and the size of the segment. This infor-

mation is passed because the G&AST is locked during this re-

quest.

HOTETOGLOBAL PROCEDURE (L_3NDEX WORD, GLOBALADDR WORD,
SIZE WORD)

RETURNS (SUCCESS-CODE BYTE)
ENTRY

I Move segment from local memory to global memory I
DOMEHORYMOVE (MNORYADDR, GLOBALAkDDR)
L..ASTr INDEX ]. NEMORY-ADDR := AVAILABLE

I Update the MHU image to reflect new address f
DO FORALLDBR9 S

IF L ASTCL INDE].SEGMENT NO/ACCESSAUTH <> 0 ANDIF
15U_ BAGE( DBR_*]. SDR( SEG_#] .ATTRIBUTES=INLOCAL THEN

EHIJIBNAGE( DBR_#J. SDR( SEG_#]. BASEADDR :=GLOBALADDR
P'

OD
SUCCESS-CODE :VALID

END 3OVETOGWBAL

Figure 28: Move To Global Pseudo-code
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9. I1ZS 32a40 12 kMJLn la=
aOV-TO.LOCAL is inveed when it becomes necessary to

move a segment from global to local memory. This occurs vhmn

one of two processes which hold a segment in global memory

swaps the segment ouat. The segment is moved from global a*-

Rory to the local memory of the remaining process. Figure 29

i1lustrates the pseudo-code for BOV1.TO_LOCJL. The pars.o-

ters passed to the memory manager are the segmeants LAST

[j index, the global address of the egsat, and the size of

the segment. The return parameter is a success code. The

BBC images of the signalled process are updated after the

move has been *ade, and the global memory is deallocated.

MOVEBTOL3CAL PROCEDURE (LNDEZ WORD, GLOBAL_&DDR WORD,SZE iFOD)
RETRNS (SJCCNSSCODS BYTE)

ENTRY
BLKS := SIZE / BLKSIZ
BASE-ADD S :S ALLOC&T.LOCALBEBfi~aB (BLISI

I love from global to local memory I
fiEMORffOV1 (GLOBAL_ADDR, BASZ_.DDBSS, SIZE)
L1S3?t LiIUDZI . NRORYADD2 :a SASZ_1DDBSS
DO FORALLDBR'S

IF LASTL_INDZ ]. SEGBNTNO/ACCZSS. ITS <> 0 ANDIF
IEU.INAGZ( DE _ ].SDR[SEG_#].ATTRIBUTESUZV.LOCAL THEN
MEQIIAG( 9DBR_ ]. SDR SEG# ]. B&SE.&DDR :=B&S_&DDESS

OD
SUCCESS.CODE :a MAID

END OV2_TO. OC -AL

Figur 29: Move To Local Pseudo-code
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jo. IjLsU Image

UPDATE is invoked follo ing a BOVETOGLOBAL operation.

After a segment has been moved from local memory to global

memory, it is necessary to signal the memory managers of all) connected processors to update their 589 images and LAST

with the current location of the segment. They must also

deallocate the moved segment's local memory. Figure 30 il-

lustrates the pseudo-code of UPDATE. The parameters passed

to the memory manager are the segmeants LAST index, the now

global address for the segment, and the size of the segment.

The return parameter is a success code.

UPDATE PROCEDURE (LINDBZ WORD, QLOBL.ADDR WORD,
SIZE WORD)

RETURNS (SUCCESSCODE BYTE)
ENTRY
DO FOBALL_DBR S

IF LAST[ LINDIX ]. BGIETiO/&CCESSAUTH <> 0 AIDIF
5UGE SAGE DDE._#]. SDR( SGe 3 .ATTRBGTS-aiLOCAL THEN

!EGOIAG( DBR_# 3. SDR( sEG_. ]. BASE_ADDR :
GLOB LADDR

OD
BLlS :a SIZE / BLISIZE
FRh_L3C1LBITo31P (H1IORYADDRB LlS)
L_AST( L_NDZ~j.E1EORY.,ADDR := ACTIVE
SUCCESSCODE :u VALID

END UPDATE

Figure 30: Update Pseudo-code
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E. sIIAI1

In this chapter the detailed design of the memory manag-

er process has been presented. The purpose of the memory

manager was outlined, followed by a detailed discussion of

the memory managerts data bases. The design presented has

identified ten basic functions for the memory manager. The

success codes returned by the memory manager are presented

in Figure 31.

This design has assumed that the kernel level inter-pro-

cess synchronization primitives will be Saltzerls signal and

wait primitives (14]. This fact dominated the design deci-

sion to loak the GAST in the user's process before it sig-

nals the memory manager. In a multi-processor environment,

the possibility of a deadly embrace exists if the memory

manager processes lock the GAST. Should follow on work im-

plement eventcounts and sequencers as kernel level synchron-

ization primitives, the locking of the G_&ST and memory man-

ager synchronization will need to be readdressed.

1
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SYSTEM WIDE KERNEL LOCAL

INVALID LEAF-SEGMENT_EZISTS
SWAPPEDIN NO LEAF.EKISTS
SWAPPEDOUT ALIASDOES-JOTExIST
SEG-ACTIVATED NOCILDZ0..DELETE
SEGDEACTIVATED GASTJFULL
SEG-CREATED L AST FULL
S EG DELETED LOCALHEIORY..PULL
VIERTUALCORZ FULL GLOBAL AEHORr FULLL
DUPLICATE-ENTRY SECONDAR!..STORAGEFULL

* READERROR
WR ITE-.ERROR
DRl VE...NOT BADY

MEMORY MANAGER LOCAL

VALID
INVALID
FOUND
NOT-FOUND
IN-LOCALMEMORY
NOTIULOCA LMENORY
I + DISK ERRORS I

Figure 31: Success Codes
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Chapter XII

STATUS OF RESEARCH

A. QNI16921QI1

The memory manager design utilized state of the art

software techniques and hardware devices. The design was de-

veloped based upon ZILOGOS Z8001 sixteen bit segmented mi-

croprocessor used in conjunction rith the Z8010 emory San-

agement Unit (23]. A microprocessor which supports

segmentation is required to provide access control of the

stored data. The actual implementation of the selected

thread was conducted upon the Z8002 non-segmented micropro-

cessor without the Z8010 AMU.

While information security requires that the micropro-

cessor support segmentation, the memory manager was devel-

oped to be configuration independent. The design will sup-

port a multi-processor environment, and can be easily

implemented upon any microprocessor or secondary storage

device. The loop free modular design facilitates any re-

quired expansion or modification.

Global bus contention is minimized by the memory manag-

er. Segments are stored in global memory only if they are

shared and writable. Secondary storage is accessed only if
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the segment does not currently reside in global memory or

some local memory. The controlled sharing of segments optim-

izes main memory usage.

The storage of the alias tables in secondary storage

supports the recreation of user file hierarchies following a

system crash. The aliasing scheme used to address s.gments

supports system security by not allowing the segment's memo-

ry location or unique identification to leave the memory

manager.

The design of the distributed kernel was clarified by

assigning the MMU image management to the memory manager.

The transfer of responsibility for memory allocation and

deallocation from the supervisor to the memory manager pro-

vides support for dynamic memory management.

In conclusion, the memory manager process will securely

manage segments in a multi-processor environment. The pro-

cess is efficient, and is configuration independent. The

primitives provided by the memory manager will support the

construction of any desired supervisor/user process built

upon the kernel.
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B. IQLLK! !Qli

There are several possible areas in the SASS design that

can be lookeli into for continued research. rhe complete in-

plementation of the memory manager design (refine and optim-

ize the current PLZ/SYS code) is one possibility. Other pos-

sibilities include the implementation of dynamic memory

management, and modifying the interface of the memory manag-

er with the distributed kernel using eventcounts and se-

quencers for inter-process communication.

The implementation of the supervisor has not been ad-

dressed to date. Areas of research include the implmenta-

tion of the file manager and input/output processes, and the

complete design and implementation of the user-host proto-

cols. The implementation of the gatekeeper, and system ini-

tialization are other possible research areas. Dynamic pro-

cess creation and deletion, and the introductica of

multi-level hosts could also prove interesting.
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PART D

kW ZIPLEREUTATION OF dULTIPROGRANMING AND
PROCESS MANAGEMENT FOR & SECURITY KERNEL

OPERATING SYSTEM

This section contains updated excerpts from a Naval Post-
graduate School HS Thesis by S. L. Reitz [12]. The origins
of these excerpts are:

INTRODUCTION from Chapter I
IMPLEMENTATION from chapter IV
CONCLUSION from Chapter V

Minor changes have been made for integration into this report.
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Chapter XIII

INTRODUCTION

The application of contemporary microprocessor technolo-

gy to the design of large-scale multiple processor systems

offers many potential benefits. The cost of high-power com-

puter systems could be reduced drastically; fault tolerance

in critical real-time systems could be improved; and compu-

ter services could be applied in areas where their use is

not now cost effective. Designing such systems presents

many formidable problems that have not been solved by the

specialized single processor systems available today.

Specifically, there is an increasing demand for computer

systems that provide protected storage and controlled access

for sensitive information to be shared among a wide range of

users. Data controlled by the Privacy Act, classified De-

partment of Defence (DoD) information, and the transactions

of financial institutions are bat a few of the areas which

require protection for multiple levels of sensitive informa-

tion. 3ultiple processor systems which share data are well

suited to providing such services - if the data security

problem can be solved.

A solution to these problems -a multiprocessor system

design vith verifiable information security -is offered in
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a family of secure, distributed aulti-microprocessor operat-

ing systems designed by O'Connell and Richardson [7]. A

subset of this family, the Secure Archival Storage System

(SASS) C9.51, has been selected as a testbed for the general

design. SASS will provide consolidated file storage for a

network of possibly dissimilar "host* computers. The system

will provide controlled, shared access to multiple levels of

sensitive information (Figure 32).

This thesis presents an implementation of a basic moni-

tor for the O'Connell-Richardson family of operating sys-

tems. The monitor provides multiprogramming and process

management functions specifically addressed to the control

of physical processor resources of SASS. Concurrent thesis

work (7] is developing a detailed design for a security ker-

nel process, the Memory Manager, which will manage SASS me-

mory resources.
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Figure 32: SASS STSTEM



Chapter IT!

IMPLEMENTATION
Implementation of the distributed kernel was simplified

by the hierarchical structure of the design for it permit-

ted methodical bottom-up construction of a series of extend-

. ed machines. This approach was particularly useful in this
L implementation since the bare machine, the Z8000 Developmen-

tal Module, was provided with only a small amount of soft-

ware support.

A. R!IZULZIA 31Z2IZ

A Zilog aCZ Developmeatal System provided support in de-

veloping Z8O00 machine code. It provided floppy disk file

management, a text editor, a linker and a loader that creat-

ed an image of each Z8000 load module.

A Z8000 Developmental Module (Da) provided the necessary

hardware support for operation of a Z8002 non-segmented mi-

croprocessor and 16K words (32K bytes) of dynamic RAM. It

included a clock, a USART, serial and parallel I/O support,

and a 2K PROM monitor.

The monitor provided access to processor registers and

memory, single step and break point functions, basic I/O

functions, and a download/upload capability with the oCZ

system.
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Since a segmented version of the processor was not
available for system development, segmentation hardware was
simulated in software as an 580 image (see Figure 33j. Alt-
hough this data structure did not provide the hardware sup-
port (traps) required to protect segments of the kernel do-
main, it preserved the general structure of the design.

OFFSET ATTRIBUTES
aigh byte I Low byte if Size I Attributes II .. .. . I . . . .I I . _~e.n. _... .. . . . ..n aI I I II I I

----- ---
segI

I - " I I I I
V I .. . . .I . .. I ... 1......... II I III It ........ ~ I _..._.. I I ..... .. ..... I

Figure 33: 510IMZAGE

.4 
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B. L]llB ZIZ1,, .. QIU&EL

The Inner Traffic Controller runs on the bare machine to

create a virtual environment for the remainder of the sys-

tea. Only this module is dependent on the physical proces-

sor configuration of the system. All higher levels see only

a set of running virtual processors. & kernel data base,

the Virtual Processor Table is used by the Inner Traffic

Controller to create the virtual environment of this first

level extended machine. A source listing of the Inner

Traffic Controller module is contained in Appendix G.

The VPT is a data structure of arrays and records that

maintains the data used by the Inner Traffic Controller to

multiplex virtual processors on a real processor and to

create the extended instruction set that controls virtual

processor operation (see Figure 34| . There is one table for

each physical processor in the system. Since this implemen-

tation was for a uniprocessor system (the Z8000 DR), only

one table was necessary.

The table contains a LOCK which supports an exclusion

mechanism for a aultiprocessor system. It was provided in

this implementation only to preserve the generality of the

design.

The Descriptor Base Register (DBR) binds a process to a

virtual processor. The OBR points to an SBU_INAGE contain-
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LOCK
RUNNING-LIST
READYLIST
FRBE_LtST

VP IDBRI PRII STATEI IDLE_FLAGI CPU4 NEXT_PI NSG_LISTI
INDEXI --- 1------ -- I --------- I

I I I I I
S--- I-------- -------- I--------- ISVI I I I I I

---------- -------- --------- I

MSG II MESSAGE I SENDER I NEXTSG I
INDEX i--------
I IIII

I I-------I----------------

I-------I----------------I

Figure 34: Virtual Processor Table

ing the list of descriptors for segments in the process ad-

dress space.

A virtual processor (VP) can be in one of three states:

running, ready, and waiting (Figure 35). A running VP is

currently scheduled on a real processor. A ready VP is

ready to be scheduled when selected by the level-I schedul-
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ing algorithm. A waiting VP is awaiting a message from some

other VP to place it in the ready list. In the meantime it

is not in contention for the real processor.
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Figulre .35: Virtual Processor States

-117-



2. L2121=1 S.ka4111M

virtual processor state changes are initiated by the in-

ter-virtual-processor communication mechanisms, SIGNAL and

WAIT. These level-I instructions implement the scheduling

policy by letermining what virtual processor to bind to the

real processor. The actual binding and unbinding is per-

formed by a Processor switching mechanism called SVAPDBR

(14]. Processor switching implies that somehow the execu-

tion point and address space of a new process are acquired

by the processor. Care must be taken to i.*sure that the old

process is saved and the new process loaded in an orderly

manner. A solution to this problem, suggested by Saltzer

[141, is to design the switching mechanism so that it is a

common procedure having the same segment number in every ad-

dress space.

In this implementation a processor register (RI4) was

reserved within the switching mechanism for use as a DBR.

Processor switching was performed by saving the old execu-

tion point ( i.e., processor registers and flag control

word), loading the new DDR and then loading the new execu-

tion point. The processor switch occurs at the instant the

DBR is changed (see Figure 36). Because the switching

procedure is distributed in the sane numbered segment in all

address spaces, the "next" instruction at the instant of the

switch will have the same offset no matter what address
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space the processor is in. This is the key to the pr'per

operation of SWAP_DBR.

To convert this switching mechanism to segmented hard-

ware it is necessary merely to replace SNAPDBB with special

I/O block-move instructions that save the contents of the

BRfU in the appropriate AMU_IAGE and load the contents of

the new SMiJINAGE into the MAU.

a. Getwork

SWAP_DBR is contained within an internal Inner Traffic

Controller procedure called GETMORK. In addition to multi-

plexing virtual processors on the CPU, GETVORK interprets

the virtual processor status flags, IDLE and PREEMPT, and

modifies VP scheduling accordingly in an attempt to keep the

CPg busy doing useful work.

There are actually two classes of idle processes within

the system. One class belongs to the Traffic Controller.

Conceptually there is a ready level-2 idle process for each

virtual processor available to the Traffic Controller for

scheduling. When a running process blocks itself, the

Traffic Controller schedules the first ready process. this

will be an idle process if no supervisor processes are in

the ready list.

The second class of idle process exists in the kernel.

The kernel Idle process is permanently bound to the lowest

priority virtual processor.
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Process #1 Process #2

Address space Address space

ClSWPB ----------------------------
V

_ Call SWkP_DBR

Save return point
on call stack.
(Process #1)

4 I
Save execution point

I
V

Svap DBR (Rl4) ------------------ > Swap DBR (Rlu)
* processor I

switch V
I Load new execution
I point.
I I
i V

Load return point
from call stack
(process #2)

i

Figure 36: S &PDBR
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The distinction is made between these classes because of

the need to keep the CPU busy doing useful work whenever

possible. There is no need for GETWORK to schedule a lev-

el-2 idle process that has been loaded on a virtual proces-

sor, because the idle process does no useful work. The vir-

tual processor IDLEFLAG indicates that a virtual processor

has been loaded vith a level-2 idle process. GETWORK will

schedule this virtual processor only if the PREEMPT flag is

also set. The PREEMPT flag is a signal from the Traffic

Controller that a supervisor process is now ready to ran.

When GETWORK can find no other ready virtual processors

with IDLE and PREEMPT flags off, it will select the virtual

processor permanently bound to the kernel Idle process.

Only then will the Idle process actually run on the CPU.

Getwork contains two entry points. The first, a normal

entry, resets the preempt interrupt return flag. (RO is re-

served for this purpose within GETWORK.) The second, a

hardware interrupt entry point, contains an interrupt han-

dler which sets the preempt interrupt return flag. The DSR

(R14) must also be set to the current value by any procedure

that calls GETWORK in order to permit the SWAPDBR portion

of GETWORK to have access to the scheduled process's address

i4 space. Upon completion of the processor switch, GETWORK ex-

amines the interrupt return flag to determine whether a nor-

mal return or an interrupt return is required.
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The hardware interrupt entry point in GETWORK supports

the technique used to initialize the system. Each process

address space contains a kernel domain stack segment used by

SWAP-DBR in GETWORK to save and restore VP states. For the

same reason that SWAP-DBER is contained in a system wide seg-

ment number, the stack segment in each process address space

will also have the same number (Segment #i in this implemen-

tation). Each stack segment is initially created as though

it's process had been previously preempted by a hardware in-

terrupt. This greatly simplifies the initialization of pro-

cesses at system generation time. The details of system in-

itialization will be described later in this chapter. It is

important to note here, however, that GETWORK must be able

to determine whether it was invoked by a hardware preempt

interrupt or by a normal call, before it can execute a re-

turn to the calling procedure. This is because a hardware

interrupt causes three items to be placed on the system

stack: the return location of the caller, the flag control

word, and the interrupt identifier, whereas a normal call

places only the return location on the stack. Therefore, in

order to clean up the stack, GETWORK must execute an inter-

rupt return (assembly instruction:IEET) if entry was via the

hardware preempt handler (i.e., 10 set). This instruction

will pop the three items off the stack and return to the ap-

propriate location. If the interrupt return flag, 1O, is

off, a normal return is executed.
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During normal operation, SVAP-DBR manipulates process

stacks to save the old VP state and load the new VP state.

This action proceeds as follows (Figure 371 :

1. The Flag Control Word (FCW), the Stack Pointer (R15)

and the preempt return flag (1O) are saved in the old

VP's kernel stack.

2. The DBR (R14) is loaded with the new VPIs DBR. !his

permits access to the address space of the new pro-

cess.

3. The Flag Control Word (FCW), the Stack Pointer (R15)

and the Interrupt Return Flag (0), are loaded into

the appropriate CPU registers.

4. RO is tested. If it is set, GE3TORK will execute an

interrupt return. If it is off, a normal return oc-

curs.

By constructing GETWORK in this way, both system initializa-

tion and normal operations can be handled in the same way.

A high level GETWORK algorithm is given in Figure 38.
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Old VP Stack Nov VP Stack

SP->I RET ADDR I CPU I I RET ADD I <--SP
I------IjEGS1 I ---------- I

Io I

* SB->I -----------I ---------- I <-SB
I SP: R15 I SP: R15 I
I ----- ---- f I ---------- I
I IRET:RO I IRET:RO I
----------- I----------SFCV FCW

---------
HEADER HEAD ER

Figure 37: Kernel Stack Segaents
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GETWORK Procedure (DBR = R14)

Begin

Reset Interrupt Return Flag (RO)

Skip hardware preempt handler

Hardware Preempt Entry:
Set DBR
Save CPU registers
Save supervisor stack pointer
Set Interrupt Return Flag (RO)

Get first ready VP

Do while not select
If Idle flag is set then
if Preempt flag is set then
select

else
get next ready VP

end if
else
select

end if
end do

SWAPDBR:
Save old VP registers in stack segment
Swap dbr (R14)

Load new VP registers in stack segment

If Interrupt Return Flag is set then
unlock VPT

simulate GATEKEEPER exit:
Call TESTVPREEMPT
Restore supervvisor registers
Restore supervv4sor stack pointer

Execute Interrupt Return (IRET)
end if

Execute normal return

end GETWORK

Figure 38: GETUOUK
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The heart of the SASS scheduling mechanism is the inter-

nal procedure, GETWORK. It provides a powerful internal

primitive for use by the virtual processors and greatly sim-

plifies the design of the virtual processor instruction set.

Virtual processor instructions perform three types of func-

tions: multiprogramming, process management and virtual in-

terrupts.

SIGNAL and WIIT provide synchronization and comaunica-

tion between virtual processors. They multiplex virtual

processors on a CPU to provide multiprogramming. This im-

plementation used a version of the signal and wait algor-

ithms proposed by Saltzer (14]. In the SASS design each CPU

is provided with a unique (fixed) set of virtual processors.

The interaction among virtual processors is a result of mul-

tiprogramaing them on the real processor. Only one virtual

processor is able to access the VPT at a time because of the

use of the VPT LOCK (SPINLOCK) to provide mutual exclusion.

Therefore race and deadlock conditions will not develop and

the signal pending switch used by Saltzer is not necessary.

This implementation also included message passing mecha-

miss not provided by Saltzer. The message slots available

for use by virtual processors are initially contained in a

queue pointed to by FREE-LIST. hen a message is sent from

one VP to another, a message slot is removed from the free
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list and placed in a FIFO message queue belonging to the VP

receiving the message. The head of each VP's message queue

is pointed to by BSG-LIST. Each message slot contains a

message, the ID of the sender, and a pointer to the next

message in the list (either the free list or the VP message

list.

IDLE and SWAPVDBR provide the Traffic Controller with a

means of szheduling processes on the running VP.

SETJPREEEPT and TESTVPREEBPT install a virtual inter-

rupt mechanism in each virtual processor. when the Traffic

Controller determines that a virtual processor should give

up its process because a higher priority process is now

ready, it sets the PREEMPT flag in that VP. Then, even if

an idle process is loaded on the VP, it will be scheduled

and will be loaded with the first ready process.

TestVPreempt is a virtual interrupt unmasking mechanism

which forces a process to examine the preempt flag each time

it exists from the kernel.

a. Wait

W&IT provides a means for a virtual processor to move

itself from the running state to the waiting state when it

has no more work to do. It is invoked only for system

events that are always of short duration. It is supported

by three internal Procedures.
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$PINL3CK enables the running VP to gain control of the

Virtual Processor Table. This procedure is only necessary

in a multiprocessor environment. The running VP will have

to wait only a short amount of time to gain control of the

VPT. SPIN-LOCK returns when the VP has locked the VPT.

GETWORK loads the first eligible virtual processor of

the ready list on the real processor. Before this procedure

is invoked, the running VP is placed in the ready state.

Both ready and running VP's are members of a FIFO queue.

GETWORK selects the first VP in this ready list, loads it on

the CPU, and places it in the running state. When GETVORK

returns, the first VP of the queue will always be running

and the second will be the first VP in the ready queue.

GET_FIRSTMESS&GE returns the first message of the mes-

sage list (also managed as a FIFO queue) associated with the

running VP. The action taken by WAIT is as follows:

WI! Procedure (Returns: Ksg, SenderID)

Begin

Lock VPT (call SPINLOCK)

If message list empty (i.e., no work) Then

Move VP from Running to Waiting state

Schedule first eligible Ready VP (call GETMORK)

end if

(NOTE: process suspended here until
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it receives a signal and is

selected by GETWORK.)

Get first message from message list

(call GZT_FIRSTNSG)

Unlock VPT

Return

end WAIT

If the running virtual processor calls WAIT and there is

a message in its message list (placed there when another VP

signaled it) it will get the message and continue to run.

If the message list is empty it will place itself in the

wait state, schedule the first ready virtual processor, and

move it to the running state. The virtual processor will

remain in the waiting state until another running VP sends

it a message (via SIGNAL). It will then move to the ready

list. Finally it will be selected by GETVORK, the next in-

structions of WAIT will be executed, it will receive the

message for which it was waiting, and it will return to the

caller.
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b. Signal

Messages are passed between virtual processors by the

instruction, SIGNAL, which uses four internal procedures,

SPIN_LOCK, ENTERMSGLIST, NAKE_READY, and GETWORK.

SPINLOCK, as explained above insures that only one vir-

tual processor has control of the Virtual Processor Table at

a time.

ENTER-MSGLIST manages a FIFO message queue for each

virtual Processor and for free messages. This queue is of

fixed maximum length because of the implementation decision

to restrict the use of SIGNAL. A running VP can send no

more than one message (SIGNAL) before it receives a reply

(i.e., VAIT*s for a message). Therefore if there are N vir-

tual processors per real processors, the message queue

length, L, is:

LN- 1

MAKE-READY manages the virtual processor ready queue.

If a message is sent to a VP in the waiting state,

MAKEREADY wakes it up (it places it in the ready state) and

enters it in the ready list. If a running VP signals a

waiting VP of higher priority, it will place itself back in

the ready state and the higher priority VP will be selected.

The action taken by signal is as follows:

SIGNAL Procedure (essage, DestinationVP)

Begin
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Lock YPT (call SPINLOCK)

Send message (call ENTER_XSGLLSI)

If signaled VP is waiting Then

lake it up and make it ready

(call MAKBEADY)

end if

Put running VP in ready state.

Schedule first elgible ready VP

(call GETWORK)

Unlock VPT

Return (Successcode)

End SIGNAL

c. SWAPIDB

SWAPVDBR contains the same processor switching mechan-

ism used in SUAPDBR, but applies it to a virtual processor

rather than a real processor. Switching is quite simple in

this virtual environment because both processor execution

point and address space are defined by the Descriptor Base
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Register. SNAP_DBR is invoked by the rraffic Controller to

load a new process an a virtual processor in support of lev-

el-2 scheduling. It uses GETMORK to control the associated

level-1 scheduling. The action taken by SWAPDBR is:

SWAPVDBR Procedure (NewDBR)

Begin

Lock VPT (call SPINLOCK)

Load running VP with New_DBR

Place running VP in ready state

Schedule first eligible ready IP

(call GETWORK)

Unlock ¥PT

Return

End SWAPVDBR

In this implementation one restriction is placed upon

the use of this instruction. If a virtual processor's 2es-

sage list contains at least one message, it can not give up

its current DBR. This problem is avoided as the natural re-

sult of using SIGNAL and WAIT only for system events, and
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"masking" preempts within the kernel. If this were permit-

ted, the zessages would lose their context. (The messages

in a VP _S3 LIST are actually intended for the process load-

ed on the VP.)

d. IDLE

The IDLE instruction loads the Idle DBB on the running

virtual processor. Only virtual processors in contention

for process scheduling will be loaded by this instruction.

(The Traffic Controller is not even aware of virtual proces-

sors permanently bound to kernel processes.)

IDLE has the same scheduling effect as SWAP_DBE, but it

also sets the IDLE-FLAG on the scheduled VP. The distinc-

tion is made between the two cases because, although the

Traffic Controller must schedule an Idle process on the VP

if there are no other ready processes, the Inner Traffic

Controller does aot wish to schedule an Idle VP if there is

an alternative. This would be a waste of physical processor

resources. The setting of the IDLEFLAG by the Traffic

Controller aids the Inner Traffic Controller in making this

scheduling decision. Logically, there is an idle process

for each VP; actually the sane address space (D88) is used

for all idle processes for the same CPU, since only one will

run at a time. As previously explained, virtual processors

loaded by this instruction will be selected by GETVOBK only

to give the Idle process away for a new process in response

to a virtual preempt interrupt. The action of IDLE is:
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IDLE Procedure

Begin

Lock VPT (call SPINLOCK)

Load running VP with Idle DBR

Set VPIs IDLB_FLAG

Place running VP in ready state

Schedule first elgible ready VP

(call GETIORK)

Unlock VPT

Return

End IDLE

9. SZT_VPREEPT

SETVPREEMPT sets the preempt interrupt flag on a speci-

fied virtual processor. This forces the virtual processor

into level-1 scheduling contention, even if it is loaded

vith an Idle process. The instruction retrieves an idle
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virtual processor in the same way a hardware preeapt ret-

rieves an idle CPU by forcing the VP to be selected by

GETVORK. The only difference between the two cases is the

entry point used in GETWORK. The action of SETVPRZEEPT is:

SETVPREEMPT Procedure (VP)

Begin

Set VP's PREEMPT flag

if VP belongs to another CPU Then

send hardware interrupt

end if

Return

End SET VPRZEPT

Since the action is a safe sequence, no deadlocks or

race conditions will arise and no lock is required on the

VPT.

f. TESTVPREEMPT
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Within the kernel of a multiprocessor system all process

interrupts (which excludes system I/O interrupts) are

masked. If process interaction results in a virtual preempt

being sent to the running virtual processor by another CPU,

it will not be handled since GETVORK has already been in-

voked. TESTVPREEMPT provides a virtual preempt interrupt

unmasking mechanism.

TEST_?PREEMPT mimics the action of a physical CPU when

interrupts are unmasked. It forces the process execution

point back down into the kernel each time the process at-

tempts to leave the kernel domain, where the preempt flag of

the running VP is examined. if the flag is off,

TEST-VPRZEHPT returns and the execution point exits through

the Gatekeeper into the supervisor domain of the pro-ess ad-

dress space as described above. However, if the PREEMPT

flag is on, the TESTVPRESAPT executes a virtual interrupt

handler located in the Traffic Controller. This jump from

the Inner Traffic Controller to the Traffic Controller

(TC_PREEPTHADLER) is a close parallel to the action of a

CPU in response to a hardware interrupt, that is a jump to

an interrupt handler. The Traffic Controller Preempt Han-

dler forces level-2 and level-I scheduling to proceed in the

normal manner. The preempt handler forces the Traffic Cont-

roller to examine the APT and to apply the level-2 schedul-

ing algorithm, TCGETWORK. If the APT has been changed

since the last invocation of this sc,.duler, it will be re-
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flected in the scheduling selections. Eventually, when the

running VP's preempt flag is tested and found to be reset,

TEST-VPRBEdPT will return to the Gatekeeper where tae pro-

cess execution point will finally make a normal exit into

its supervisor domain. TESTVPRZEMPT perfarms the following

action:

TESTVPREEMPT Procedure

- -i Begin

Do while running VP's PREEMPT flag is set

Reset PREEMPT flag

Call preempt handler

(call TCPREEfPT_HASDLEBj

End do

Return

End TEST-VPREEMPT
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C. CAON)'Q R.O EIR

The Traffic Controller runs in a virtual environment

created by the Inner Traffic Controller. It sees a set of

running virtual processor instructions: SMP_VDBR, IDLE,

SETVPREEMPT, and RUNNING_ VP, and provides a scheduler,

TC_GETWORK, which multiplexes processes on virtual proces-

sors in response to process interaction. It also creates a

level-2 instruction set: ADVANCE, AWAIT, and PROCESS_CLASS,

which is available for use by higher levels of the design.

The Traffic Controller uses a global data base, the ACTIVE

PROCESS TABLE to support its operation.

The Active Process Table is a system-wide kernel data-

base containing entries for each supervvisor process in SASS

(Figure 39). It is indexed by active process ID. The

structure of the APT closely parallels that of the Virtual

Processor Table. It contains a LOCK to support the iaple-

aentation of a mutual exclusion mechanism, a RUNNING LIST,

and a READELIST-HEAD. The Traffic Controller is only con-

cerned with virtual processors that can be loaded with su-

perTisor processes. Since two VP's are permanently bound to

kernel processes (the demovy Manager and the Idle Process),

they cannot be in contention for level-2 scheduling; the

Traffic Controller is unaware of their existence; since

there are a number of available virtual processors, the
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RUNNINGLIST was implemented as an array indexed by VPID.

The READYLISTHEAD points to a PIFO queue that includes

both running and ready processes. The running processes

will be at the top of the ready list.) Because of their completely static nature, idle process-

es require no entries in the APT. Logically, there is an

idle process at the end of the ready list for each VP avai-

lable to the Traffic Controller. If the ready list is emp-

ty, TCGETWORK loads one of these "virtual" idle processes

by calling IDLE, and enters a reserved identifier, #IDLZ, in

the appropriate RU1NINGLIST entry. This identifier is the

only data concerning idle processes that is contained in the

APT. Idle process scheduling considerations are moved down

to level-i, because the Inner Traffic Controller knows about

physical processors, and can optimize CPU use by scheduling

idle processes only when there is nothing else to do.

The subject access class, SCLASS, provides each process

with a label that is required by level-3 modules to enforce,

the SASS non-discretionary security policy.

- 139 -



LOCK

EUNIrNGJ.IIST PROCESSID

VP.ID I

I----------I

RZADI..LIST HEAD

DOR ACCESS-CLASS STATE NEXT-AP EVEIITCOUNTI I II I I HANDLE
I I I I INSTANCE
I I I I COUNT

Ap I----------I----------- ------

Indexi I

Figure 39: Active Process Table
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2. jln=.aSceduin

Above the Traffic Controller, SASS appears as a collec-

tion of processes in one of the three states: running,

ready, or blocked. Running and ready states are analogous

to the corresponding virtual processor states of the Inner

Traffic Controller. However, because of the use of event-

count synchronization mechanisms by the Traffic Controller,

the blocked state has a slightly different connotation than

the VP waiting state.

Blocked processes are waiting for the occurrence of a

non-system event, e.g., the event occurrence may be sig-

nalled from the supervisor domain. When a specific event

happens, all of the blocked processes that were awaiting

that event are awakened and placed in the ready state. rhis

broadcast feature of event occurrence is more powerful than

the message passing mechanism of SIGNAL, which must be di-

rected at a single recipient.

Just as SIGNAL and WAIT provide virtual processor multi-

plixing in level-i, the eventcount functions, ADVANCE and

AWAIT, control process scheduling in level-2.

a. TC_GETVORK

Level-2 scheduling is implemented in the internal Traff-

ic Controller procedure, TC_GETWORK. This procedure is in-

voked by eventcount functions when a process state change
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aay have occurred. It loads the first ready process on the

currently scheduled VP (i.e.,, the virtual processor that has

been scheduled at level-1 and is currently executing on the

CPU).

TCGETVORK Procedure

Begin

VPID := RUNNINGVP

Do while not end of ready list

if process is running then

get next ready process

else

RUNNINGLIST CVPD] :: PROCESSID

Process state := running

SVAPTDBR

end if

end do

If end of running list (no ready processes) Then

RUNNING-LIST : #IDLE

IDLE

end if

Return

End TCGETORK
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b. TCPRB3UPTHANDLE

Preempt interrupts are masked while a process is execut-

inq in the kernel domain. As the process leaves the kernel,

the qatekeeper unmasks this virtual interrupt by invoking

TEST_VPREZNPT. This instruction tests the scheduled VP's

PREEMPT flag. If this flag is off, the process returns to

the Gatekeeper and exits from the kernel; Dut if the flag is

set, TESTVPREEMPT calls the Traffic Controller's virtual

preempt interrupt handler, TCPREEMPTHANDLER. This handler

* invokes ?CGETVORK, which re-evaluates level-2 scheduling.

* Eventually, when the schedulers have completed their func-

tions, the handler will return control to the preempted pro-

cess, which will return to te Gatekeeper for a normal exit.

This sequence of events closely parallels the action of a

hardware interrupt, but in the environment of a virtual pro-

cessor rather than a CPU. The virtualization of interrupts

provides the ability for one virtual processor to interrupt

execution of another that may, or may wot, be running on a

CPU at that time. This is provided witho-t disrupting the

logical structure of the system. This capability is parti-

cularly useful in a multiprocessor environment where the

target virtual processor may be executing on another CPU.

Because these interrupts will be virtualized, the operating

system will retain control of the system. The action of the

TCPREEMPTHANDLER is described in the procedure below.
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TCPREEMPTHANDLER Procedure

Begin

Call WAITLOCK

VPID :- RUNNINGGVP

ProcessID := RUNNING LIST (VPID]

If process is not idle Then

Process state := ready

end if

Call TCGETWORK

Call iAITUNLOCK

RETURN

End TC PREEMPT-HANDLER

WAITLJCK and W&IT_UYLOCK provide an exclusion mechanism

which prevents simultaneous multiple use of the APT in a

multiprocessor configuration. This mechanism invokes WAIT

and SIGNAL of the Inner Traffic Controller.
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3. I 2 a
An eventcount is a non-decreasing integer associated

with a global object called an event [11]. The Event Hanag-

er, a level-3 module, controls access to event data when re-

quired and provides the Traffic Controller with a HANDLE, an

INSTANCE, and a COUNT. The values for all eventcounts (and

sequencers) are maintained at the Memory Manager level and

are accessed by calls to the memory Manager. The HANDLE

j provides the traffic controller with an event ID, associated

with a particular segment. INSTANCE is a more specific de-

finition of the event. For example, each SASS supervisor

segent has two aventcounts associated with it, a INSTANCE.1

and a INSTANCE_2, that the supervisor uses keep track of

read and write access to the segment [9]. Eventcounts pro-

vide information concerning system-vide events. They are

manipulated by the Traffic Controller functions ADVANCE and

AWAIT and by the Memory Manager functions, READ and TICKL-7

A proposed high level design for ADVANCE and AWAIT is pro-

vided by Reitz (12].

a. Advance

ADVANCE signals the occurrence of an event (e.g., a read

access to a particular supervisor segment). The value of

the eventaount is the number of ADVANCE operations that have

been performed on it. When an event is advanced, the fact

must be broadcast to all blocked processes awaiting it and
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the process must be awakened and placed on the ready list.

Some of the newly awakened processes may have a higher pri-

ority than some of the running processes. In this case a

virtual preempt, SET-TPREEMPT (IP_ID), must be sent to the

virtual processors loaded with these lower priority process-

es.

b. Await

When a process desired to block itself until a particu-

lar event occurs, it invokes AWAIT. This procedure returns

to the calling process when a specified eventcount is

reached. Its function is similar to WAIT.

c. Read

READ returns the current value of the eventcount. This

is an Event Manager (level three) function. This module

calls the Memory Manager module to obtain the eventcount va-

lue.

d. Ticket

TICKET provides a complete time-ordering of possibly

concurrent events. It uses a non-decreasing integer, called

a sequencer, which is also associated with each supervisor

* segment. As with READ, this is an Event Manager function

that calls the Memory Manager to access the sequencer value.

Each invocation of TICKET increments the value of the se-
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quencer and returns it to the caller. Two different ases of

ticket will return two different values, corresponding to

the order in which the calls were made.

Because the Inner Traffic Controller's scheduler,

GETVORK, can accommodate both normal calls and hardware in-

terrupt jumps, the problem of system initialization is not

difficult.

When SASS is first started at level-i, the Idle VP is

running and the memory manager VP, which has the highest

priority, is the first ready virtual processor in the ready

list. All VP's available to the Traffic Controller for lev-

el-2 schedling are ready. Their IDLEFLAG's and PREEMPT

flags are set.

At level-2, all VP's are loaded with idle processes and

all supervisor processes are ready.

The kernel stack segment of each process is initialized

to appear as if it had been saved by a hardware Preempt in-

terrupt (Pigure 40).

All CPU registers and the supervisor stack pointer are

stored on the stack. 215 is reserved as the kernel stack

point; R14 contains the DBR. All other registers can be

used to pass initial parameters to the process. The order

in which these registers appear on the stack supports the

PLZ/ASM block-move instructions.

- 147 -

Oml.



Stack Segment

SP---> I sup stack ptr
--------------- I

RO5

; R I --->D B R

int ID

----------------

; sup Fcw

---------------

stack base->I procss entry

*I -- - - - - - -

kr stack pr I

RT FLAG I

---------------

ker FCW

--------------- I

header

I---------------

Figure 40: Initialized Stack
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The status block contains the current value of the stack

pointer, R15, and the preempt interrupt return flag. This

flag is set to indicate that the process has been saved by a

preempt interrupt. The first three items on the stack: the

process entry point, the initial process flag control word,
4

and an interrupt indentifier, are also initialized to sup-

port the action of a hardware interrupt.

To start-up the system, R14 (the DBR) is set to the Idle

process DBR; the CPU Program counter is assigned the

PREEMPTENTRY point in GETWORK; the CPU Flag Control Word

(FCW) is initialized for the kernel domain; and the CPU is

started. Because the IdleVP is the lowest priority VP in

the system, it will place itself back in the ready state and

move the Memory Manager in the running state. The Mezory

Manager will execute an interrupt return because the inter-

rupt return flag was set by system initialization. There

will be no work for this kernel process so it will call WAIT

to place itself in the waiting state. The next ready VP is

idling, but since it's IDLZ FLAG and PREEMPT flag are set,

GETWORK will select it. It too will execute an interrupt

return, but because its PREEMPT flag is set, it will call

TCPREEMPTHANDLER. This will cause the first ready process

to be scheduled. Each time a supervisor process blocks it-

self, the next idle VP will be selected and the sequence

will be repeated.
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The action described above is in accord with normal op-

eration of the system. The only unique features of initial-

ization are the entry point (PRBEEPT-ENTR: in GETWOK) and

the values in the initialized kernel stack.

The implementation presented in this thesis has been run

on a Z8000 developmental module. System initialization has

been tested and executes correctly. At the current level of

implementation, no process multiplexing function is availa-

ble. There is no provision for unlocking the aPT after an

initialized process has been loaded as a result, a call to

the Traffic Controller (viz., ADVkNCE or AMAIT). In a pro-

cess multiplexed environment this would cause a system dead-

lock. Once the process left the kernel domain with a locked

APT, no process would be able to unlock it. The Traffic

Controller must handle this system initialization problem.
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Chapter IV

CONCLOSION

The implementation presented in this thesis created a

j security kernel monitor that runs on the Z8000 Developmental

Module. This monitor supports multiprogramming and process

management in a distributed operating system. The process

executes in a multiple virtual processor envixonsent which

is independent of the CPU configuration.
This monitor was designed specifically to support the

Secure Archival Storage System (SASS) [2, 9, 5]. dowever,

the implementation is based on a family of Operating Systems
(71 designed with a primary goal of providing multilevel se-

curity of information. Although the monitor currently runs

on a single microprocessor system, the implementation fully

supports a multiprocessor design.

A. AIo91&112=5_

Because the Zilog NaU is not yet available for the Z8060

Developmental Module, it was necesary to simulate the seg-

mentation hardware. As Reitz explained [12], this was ac-

complished by reserving a CPU register, R14, as a Descriptor

Base Register (DBR) to provide a link to the loaded addresss

space. When the 4MU becomes available, this simulation must

be removed. This can be done in two steps.
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First, the addressing format must be translated to the

segmented form. This requires no system redesign.

Second, the switching mechanism est be modified to ac-

comodated to use the HSU. This can be done by modifying the

SUAP_DBR portion of GZTVORK to multiplex the HKUIAAGZ onto

the NEu hardware and this can be accomplished by changing

about a dozen lines of the existing code.

j . IoLLQ 21 11

Although the monitor appears to execute correctly, it

has not been rigorously tested. Before higher levels of the

system are added, it is essential that the monitor be highly

reliable. Therefore a formal test and evaluation plan

should be developed.

An automated system generation and initialization e-

chanis is also required if the monitor to be is a useful

tool in the development of higher levels of the design.

Once the monitor has been proven reliable and can be

loaded easily, work on the implementation of the Semory San-

ager kernel process and the remainder of the kernel can con-

tinue.

- 152 -



PART 9

IMPLEMENTATIOU OF SEGMENT NAMAGEMEIT FOR A
SECURE ARCHIVAL STORAGE SYSTEM

This section contains excerpts from a Naval Postgraduate
School HS Thesis by J. T. wells [20]. The origins of these
excerpts are:

INTRODUCTION from Chapter I
SEGMENT MANAGEMENT FUNCTIOPS

SEG MENT MANAGER
NON-DISCRETIONARY SECURITY MODULE
MEMORY MANAGER
SuaMARY from Chapter II

SEGMENT MANAGEMENT IMPLEMENTATION from Chapter III
CONCLUSIONS AND FOLLOW ON WORK from Chapter IV

Minor changes have been made for integration into this report.
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Chapter ZVI

INTRODUCTION

This thesis addresses the implementation of the segment

management functions of an operating system known as the Se-

cure Archival Storage System or SASS. this system. with full

implementation, will provide: (1) multilevel secure access

to information (files) stored in a "data warehouse" for a

network of multiple host computers, and (2) controlled data

sharing among authorized users. The correct performance of

both of these features is-directly dependent upon the prop-

er implementation of the segment management functions ad-

dressed in this thesis. The issue of access to sensitive in-

formation is addressed by the lVon-Discretionary security

Module, which mediates all non-discretionary access to in-

formation. sharing of information is accomplished chiefly

through the properties of segmentation, the SASS memory man-

agement scheme that is supported by the memory manager No-

dule and the Segment Manager module, the implementation of

segment management for SASS is thus integral to the attain-

sent of the two key goals that SASS was designed to achieve.

This implementation addresses the Mon-Discretionary Secari-

ty, Distributed Memory manager (the interface to the Memory

Manager Process), and Segment manager modules.

-154-



Chapter XII

SEGMENT MNAGEMENT FUMCTIONS

A. HIIE klkiJI

The Segment manager is the focal point of the segment

management function. Using the per-process Known Segment Ta-

ble as its database and the Memory Manager and ton-Discre-

tionary Security module in strongly supportive roles, it is

responsible for managing the segmented virtual memory for a

process. Its role can be viewed as somewhat intermediary in

nature (viz., between the Supervisor modules and the Memory

manager modules). The extended instruction set created in

the Segment Manager includes the following instructions:

CREATE SEGNENT, DELETZ_SEGmENT, MAKE KNOIN, TBRMINIATE

SM_SWP_15, and SMSWAPOUT (note that the names for SMAP_IN

and SWAPO3T have been modified by preceding each with Sm_;

this is strictly for clarity because the memory Manager also

creates two instructions called SUP_IN and SVkPOUT).

These instructions are invoked by the Supervisor domain of

the process (viz., calls are made from the Supervisor domain

via the Gatekeeper to the Segment manager in the Kernel do-

main) to provide SASS support to the Host.
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In qeneral, when the Segment manager receives these

calls, it performs certain checks to ensure the validity and

security compliance (when required) of the request (call).

These checks are performed using its own database (the KST)

and by calls to the Non-Discretionary Security module (when

required). The Segment Manager invokes one of six memory

Manager (more specifically, the Distributed Memory Manager

Nodule) created instructions. These instructions include:

MM_CREATE_NTRY, M._DBLTBZNTBY, AMMACTIVATE,

MSDECTIVkTE, SK_SULP_I, and dM_SAR_OT. These invoked

instructions (procedures) in turn perform interprocess com-

munciations with the non-distributed memory manager process

(where actual memory management functions are accomplished).

These interprocess invocations and returns are accomplished

through the use of the IPC primitives Signal and Wait. The

Segment Manager returns the required arguments to the Super-

visor by value (as passed back to it by the Memory Manager

and/or determined within itself). The Segment Manager per-

forms actual segment number assignment when a segment is

made known to a process' address space. It also performs

any further database (KST) updating as may be required.

2.

The Known Segment Table (KST) is the database used to

manage segments. The KST is described in its tabular form

and PLZ/S!S structured representation in Figure 41. There
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are several basic and pertinent facts to be noted of the

KST:

1. It is a process local database; that is, each process

has its own KST.

2. The KST is indexed by segment number; each record of

the KST consists of a set of fields (description in-

formation) regarding a particular segment.

3. Entering information into the fields of a segment is

called "making a segment known". This simply refers

to adding a segment to a process$ address space

(viz., making a segment accessible to a process).

.. In SASS, a correspondence exists between making a

segment "known" and making a segment "active"; i.e.,

when a segment is added to the address space of a

prozess, this action results in an entry in the KST

(making "known") by the Segment manager and an entry

in the Global Active Segment Table (GAST) by the Be-

mory Manager process (making it "active"). The GAST

will be described later in this chapter.

A proper description of the structure and fields of the KST

is necessary at this point. Using the representation of the

PLZ/SYS language structure, the KST is described as an array

of records of fields of varying types. The fields are de-

scribed separately below. Although the KST index is not in

itself a field in the record, it does perform a rather sig-

nificant role. The KST index is an integer closely related
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to the segment number of the segment described in that KST

entry (viz., it is the subscript into the array of records).

This segment number also corresponds to the ABU descriptor

register (number) for that segment.

The MR-Handle is the first field in a KST record. The

MNHandle is a system wide unique number that is assigned to

each segment with an entry in the G...AST (viz., every active

segment). This "handle" is the instrument of controlled sin-

gle copy sharing of information (segments). It allows a seg-

ment to exist under one unique handle but be accessible in

the address space of more than one process (with different

segment numbers in each address space). The Eftfiandle is re-

turned to the Segment Manager by the Memory Manager during

the execution of the make-K~nown instruction.

The Size field is an integer value (of language struc-

ture type "word") which represents the number of 256 byte

blocks composing a segment.

The AcCessRode field is used to describe the process'

access to the segment (i.e., null or read and/or write).

The In-Core field is used to indicate if the segment is

or is not in main memory (i.e., this field is a flag or

true/false boolean switch).

The Class field is a long word field used to represent

the degree of information sensitivity (viz., access class)

assigned to the segment. This field (for example) would be

used to numerically describe a classification label (as de-

scribed above) .
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The MentorSeg Nr field is a number representing the

segment number of a segment's parent or "mentor" segment.

Its importance will discussed shortly.

The EntryYr field is a number representing a segment's

index number into its parent or mentor segment's Alias Table

The Alias Table is a Memory Manager database and will be

described later. The aliasing scheme provided via the alias

tables is used to prevent passing system wide information

out of the Kernel (i.e., the UniqueID of a segment). The

"alias" of a segment is the concatenation of the men-

torSeg_Nr with the segment's EntryNr (index) into the men-

tor segent's Alias Table. It is clear that the last two

fields of a KST record are the "alias* of that segment.

B. 121:I sUI..t AN ZI MAU/L

The key in protection of secure information using inter-

nal controls was identified as the security kernel concept.

The basic idea within this concept is to prove the hardware

part of the Kernel correct and, similarly, to keep the soft-

ware part small enough so that proving it correct is feasi-

* ble. k central component of the kernel software is the

Non-Discretionary Security module (hereafter referred to as

the NDS Module). The NDS Module is concerned only with the

non-discretionary aspect of the security policy in effect;

since the discretionary aspect is subservient in nature to
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the non-discretionary aspect, it is then sufficient that the

Kernel contain only the software representing the non-dis-

cretionary aspect of the security policy. The discretionary

security is provided outside the kernel in the SASS supervi-

sor. Every attempt to access information must result in an

invocation of the NDS Module.

The function of the NDS Module is to compare two classi-

fications (viz., compare two labels), make a decision as to

their relationship (i.e., =,>,<,I), and return a true/false

interpretive answer relative to the query of the calling

procedure. The mechanism used as a basis is the lattice mo-

del abstraction previously discussed. The NDS Module does

not require a database since the labels it compares are

scored in (passed from) other Kernel databases.

C. fl AI1

1. _

The Memory Manager process is the only component of the

non-distributed kernel. It is responsible for managing the

real memory resources of the system -- main (local and glo-

bal) memory and secondary storage. It is tasked by other

processes within the Kernel domain (via Signal and Wait) to

perform nemory management functions. This thesis viil ad-

dress the Memory Manager in terms of two components: (1) the

Memory Manager Process (also called the nondistributed ker-

nel aid the Memory lanager Module), and (2) the distributed
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Memory Manager (also called the Distributed emory Manager

Module|. The former is the "true" memory manager while the

latter is the interface with other processes, that is, it

resolves the issue of interprocess communication with the

"true" memory manager.

The Distributed Memory manager module creates the fol-

lowing extended instruction set: MM_CREA?_ENTR!,

MMDELETEENTRY, MMACTIVATE, MM_DEACTIVATE, mn_SAPIN, and

MM_SWAP_OUT. The instructions form the mechanism of communi-

cation between the Segment Manager of a process and a memory

manager process (where the actual memory aanagement func-

tions are performed). The Memory Manager Process instruction

set corresponds one to one with that of the Distributed Me-

mory Manager; the set consists of: CREATE_ENTRY,

DELETEENTRY, ACTIVATE, DEACTIVATE, SWAP_IN, and SiAP_3UT.

The basic functions performed by the Memory manager are al-

location/deallocation of global and local memory and of sec-

ondary storage, and segment transfers from local to global

memory (and vice-versa) and from secondary storage to main

memory (and vice-versa).

2. Diaki!

A detailed and descriptive discussion of the Memory Man-

ager databases is presented in the work of Gary and Moore

(5], and the reader may refer to it for memory manager data-

base details. This thesis addresses the implementation of
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the distributed Memory Manager but not the Memory Manager

Process, thus brief descriptions are provided of the lat-

ter's databases.

The Global Active Segment Table (G_&ST) is a system wide

(i.e., shared by all memory manager processes) database used

to manage all active segments. A lock/unlock mechanism is

used to prevent race conditions from occurring. The distri-

buted memory manager of the signalling process locks the

GAST before it signals the memory manager process.

The Local Active Segment Table (LAST) is a processor

local database which contains an entry for each segment ac-

tive in a process currently loaded in local memory.

The Alias Table is a system wide database associated

with each nonleaf segment in the Kernel. It is a product of

the aliasing scheme used to prevent passing system wide in-

formation out of the Kernel. The alias table header (provid-

ed for file system reconstruction after system crashes) has

two pointers, one linking the alias table to its associated

segment, the other linking the alias table to the mentor

segment's alias table. The fields in the alias table are

Unique_D, Size, Class, PageTableLoc, and AliasTableLoc.

The index into the alias table is EntryNo.

The Hemory Management Unit Image (BUm_Iaage, Figure 42)

is a processor local database indexed by DBE_No (viz., for

each DBRNo there is a NU_Image record, with each record

containing a software image of the segment descriptor regis-
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ters of the hardware NMU). The NN_Iaage is an exact image

of the 3HU. Each record is indexed by Segent_No (segment

number) and each Segmento entry contains three fields. The

Base-kddr field contains the segment's base address in memo-

ry. The Limit field contains the number of blocks of conti-

guous storage for the segment (zero indicates one block).

The kttributes field contains 8 flags including 5 which re-

late to the memory manager. The BlksUsed field and the

MaxBlks (available) fields are per record (not per segment

* entry) and are used in the management of

each process$ virtual core.

The Memory Bit Maps (Disk_Bitaap, Glo-

ballemory_Bittap, and Local_leoryBitaap) are memory

black usage maps that use true/false flags (bits) to indi-

cate the use or availability of storage blocks.

The only database in the Distributed memory Manager is

the Memory Manager CPU Table (Figure 43). It is an array of

memory manager VPZD's (3M_VP_ID) indexed by CPU number.

This table enables a signalling process to identify the ap-

propriate memory manager process (virtual processor) to sig-

nal.
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Figure 42: HeIory Management Unit Image
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CPU .II

---------- - - -

Figure 43: Memry manager-CPU Table

The segment management functions and key related coa-

cepts (such as segmentation) were discussed in this chapter.

The importance of segmentation to data sharing and inforna-

tion security was emphasized as were key information securi-

ity concepts. Vith this background, the implementation of

segment management and a non-discretionary security policy

. . will be described in the following chapter.
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Chapter 1VII

SEGMENT MANAGIZEI XPLIEB92AIZON

The iapleentation of segment management functions and a

non-discretionary security policy is presented in this chap-

ter. Paramount to this implementation were several key is-

sues that affected the implementation. These issues are dis-

cussed first. The implementation is discussed in terms of

the Segment Manager, Yon-Discretionary Security (NDS), and

Distributed Memory manager modules.

A . I~jkjIUUL2! Uiss

Segment management for the SASS was provided through the im-

plementation of the Segment Manager Module, the NDS Module,

and the Distributed Memory Manager Module. Additionally,

since a lemonstration/testbed was integral to the testing

and verification of the implementation, it was necessary to

complete other supportive tasks. Reitz C12] provided a de-

monstration of the operation of the Inner Traffic Controller

primitives SIGNAL and VAIT (for interprocess communica-

tion). Integral to this demonstration was the correct per-

formance of the Inner Traffic Controller VP scheduling me-

chanism and a "stub" of the Traffic Controller and its

process scheduling mechanism (the TC support and use of the
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mechanism of eventcounts and sequencers was not a part of

the demonstration). The Segment management demonstration

(hereafter referred to as ,,Segfgr.Desow) was "built on top

of" Reitz' ITC synchronization primitive demonstration

(hereafter referred to as "Sync. Demo"). Thus, an immediate

issue was to resolve the feasibility of adding on to

Sync.Deso and also to refine the present design of the Sync.

Demo to facilitate its integration into the Seggr.Demo.

One aspect of this effort was in resolving the problem of

how to pass (i.e., in interprocess communication) a larger

message.

The Sync.Demo passed "word" (16 bit) messages. To pro-

vide the mechanism for the distributed memory manager to

signal the memory manager process with a command function

identification code and the arguments needed to perform that

function (e.g., CR-ITI-BITR! and its input arguments), a

message size of at least eight words (16 bytes) was neces-

sary. An obvious answer was to signal with an array of

eight words as the message. PLZ/S!S, however, does not al-

low passing arrays in its procedure calls (a procedure call

is analogous to a subroutine call). Another alternative was

to signal with a pointer to the array of words, since

PLZ/SYS does allow passing pointers in procedure calls (thus

the message would be a pointer to the real message). This,
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hovever, would be invalid in the segmented implementation

(on the Z8000 segmented microprocessor) since identical seg-

ment numbers in different processes say not refer to identi-

cal segments. For example, a pointer in a process (e.g.,

file management) points to an array (i.e., provides its ad-

dress) by segment number and offset; passing this pointer to

another process (e.g., memory manager) would provide this

same segment number and offset which, of course, may be a

different object in the second process's address space).

Another alternative considered was that of a shared

"Mailbox" segment with an associated eventcount acted on by

the Kernel Inner Traffic Controller primitives

TICKET,ADVINCE and AWAIT. A design for using this concept

in the supervisor ring is provided by Parks E9]. This al-

ternative was not deeply considered since these primitives

are not included in the current Inner rraffic Controller.

The method ultimately used to signal the new length mes-

sages is based on the fact that the ITC is in both the sig-

nalling and the receiving (memory manager) processes' ad-

dress space. The message is loaded into an array in process

11 and a pointer to the array is passed in the call SIGNAL;

the YPT, the !TC's database, is then updated by (using the

pointer) putting the message into its MSGQ section. The

message is retrieved by process #2 by execution of Reitz'

WAIT primitive with only one refinement. rhat refinement is

for the "waiting" process to provide as an argument (in the
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WAIT primitive) a pointer to its own message array so that

the message in the VPT can be copied to it. This refinement

provides for passing a long message essentially "by value"

between processes.

2. Zt atua U ALa~asa1E

Another issue concerned the use of pointers in the in-

plementation of segment sanaeqeen . This necessary "evil"

is a result of the need t x ass linguistically "complex"

data types in procedure calls. Czmplex types refer to array

and record structures ii PLZ/SYS (as opposed to the "simple"

types--byte, word, integer, short-integer, long, and poin-

ter). In managing databases (e. g., KSI, GAST) which con-

sist of arrays of records (which in turn contain records

and/or arrays), it was frequently necessary to reference

data as an array or record. Within a process, the use of

pointers was not a problem (i.e., not a problem such as

would be encountered in IPC passing of pointers).

3. j2a2Rnr As
The issue of code reentrancy was addressed at the assem-

bly language level through the use of a stack segment and

registers for storage of local variables. PLZ/STS (high

level language) does not address reentrant procedures and

thus the segment management high level code is not automati-

cally reentrant. The problem of reentrancy can be seen by
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looking at a shared procedure that is not reentrant; such a

procedure has storage for its variables allocated statically

in memory. Suppose a procedure (e.g.# in the Kernell can be

activated by more than one process. While the procedure is

executing in one process, a process switch occurs (e.g., to

~1 vait for a disk transfer) and its execution is suspended.

The second process is activated, and while it is running it

invokes the procedure. While the procedure is executing for

the second process it uses the same storage space for varia-

bles as it did when executing for the first process. Eventu-

ally, it relinquishes the processor. However, when the

procedure resumes its execution for the first process, the

variable values that were in use by it originally have been

changed during its execution in the second process. Thus,

incorrect results are now inevitable.

References to the "memory Manager" in past works have

generally meant the memory manager process (non-distributed

kernel). This work references two distinct components of

the "memory manager module". The Distributed memory manager

is an interface provided to the memory manager Process. it

~ 4 is, in fact, distributed in the address space of each Super-

visor process. In contrast, the memory manager Process

clearly Is not distributed and its address space is con-

tained entirely in the Kernel.
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5. E:Z2GsAA in2 l JieSR aie

Another key issue was that of the per process Segment

manager database, the KST. Since each process has its own

KST, it cannot be linked to the (shared) segment manager

procedures. To implement the KST as a per process database,

it was convenient to establish, by convention, a KST segment

number that is consistent from process to process. That

segment in each process is the KST segment for that process.

Implementation is then accomplished by using the segment

number to construct a pointer to the base of the appropriate

KST. It is then easy to calculate an appropriate offset to

index any desired entry in the KST data.

6. 2fJ, iAnl-

In Peitz's implementation of the multilevel scheduler

and the IPC primitives, references to "DBa" (descriptor base

register) are references to an address. That address value

represents a pointer to an ANUINAGE record containing the

list of descriptors for segments in the process address

space. Gary and Moore C5] reference a ODBRiOO that is es-

sentially a handle used within the memory manager as an in-

dex within the RMUMAGE to a particular ang record. The

base address of the MHU record indexed by DBRIO is then

equivalent to the concept of DBE value used in Reitz' work.

The effect of this inconsistency on the segment management

isplementation was minor and will be further discussed later

in this chapter.
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B. SNll[ lKC~t.gO.DgU~

The Segment Manager Nodule consists of six procedures

representing the six extended instructions it provides.

These are based on the design of Coleman [2]. Only calls

from external to the Kernel (via the Gate Keeper) may be

made to the Segment manager (per the loop-free structure of

the SASS). The normal sequence of invocation of the Segment

Manager functions to allow referencing a segment is: (1)

CREATESEGMENT--allocate secondary storage for the segment

and update the mentor segment's Alias rable, (2)

MAKE..KNOVW--add the segment to the process address space

(segment number is assigned), (3) SVAP_IN--move the segment

from secondary storage into the process's main memory. The

normal sequence of invocation to "undo" the above is: (1)

SWAPOUT--move the segment from main memory to secondary

storage, (2) TERMINATE--remove the segment from the pro-

cess's address space, (3) DELETESEGEUT--deallocate secon-

dary storage and remove the appropriate entry from the alias

table of its mentor segment. The six Supervisor entries

into the Segment Manager (viz., the six extended instruc-

tions) will be discussed individually below. The PLZ/ASM

listings for the Segment Manager are in Appendix H.
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The function that creates a segment (i.e., adds a new

segment to the SASS) is CREATESEGBET. This function vali-

dates the correctness of the Supervisor call by checking the

I parameters and making certain security checks. The distri-

buted memory manager is then called to accomplish interpro-

cess communication with the Memory Manager Process, where

segment creation is realized through secondary storage allo-

j cation and alias table updating.

CREATESEGBENT is passed as arguments: (1) Men-

torSegjNo--the segment number of the mentor segment of the

segment to be created, (2) Entry_No--the desired entry num-

ber in the alias table of the mentor segment, (3) Class--the

access class (label) of the segment to be created, and (4)

Size--the desired size of the segment (in blocks of 256

bytes). The initial check is to verify that the desired

size does not exceed the designed maximum segment size. If

this check is satisfactory, a conversion of the Men-

tor_SegNo to a KST index is necessary. This is because the

Kernel segments use the first several segment numbers avai-

lable but do not have entries in the KST. Thus if there

were 10 Kernel segments and a system segment had segment

number 15, then its index in the KSr would actually be 5

(i.e.,the Kernel segments would use numbers 0-9, and this

segment would be the sixth segment in the KST and its index

would be 5). A call is then made to the procedure
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ITC_GETSE PTR with the constant KSTSEG_0O passed as a

parameter. This procedure will return a pointer to the base

of this process' KST. This pointer is then the basis for

addressing entries in the KST. The next check is to see if

the mentor segment is known (viz., is in the address space

of the process, and thus, in the KST). The key to determin-

ing if any segment is known is the mentor segment entry

(I_SEGNo) for that segment t the KST. If not known, this

entry in the segment's KST record will be filled with the

constant NULLSEG. The basis for checking to see if the

segment's mentor segment is known is the aliasing scheme im-

plication that a mentor segment must oe known before a seg-

ment can be created. The process classification must next

be obtained from the Traffic Controller. The process clas-

sificatiou is checked to ensure that it is equal to the

classification of the mentor segment since write access to

its alias table is needed to create a segment. The NDS mo-

dule's CLASSEQ procedure is called and returns a code of

true or false. The last check is the ccapatibility check to

ensure that the classification of the segment to be created

is greater than or equal to the classification of the mentor

seqment. This is accomplished by calling the NDS Module's

CLASS_GE procedure which returns a code of true or false.

If any of these checks are unsatisfactory, an appropriate

error code is generated and the Segment Manager returns to

its calling point. If all checks are satisfactory, then a
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pointer to the mentor segment's lN_Handle array is derived

(HPTR). Note that in the current memory manager design [5]

the actual MK Handle contents are a Uniue_ID (a long word,

viz., two words concatenated), and an IniezMo (index into

the G_AST, a word); thus together these two fields are a to-

tal of three words. Since the Segment Manager does not in-

terpret this handle, it is considered a three word array at

, this level. For this reason, the entire uninterpreted

M_Handle array will be passed by passing its pointer. This

pointer and EntryNo, Size, and Class are then passed in a

call to the distributed memory manager procedure

MMCREATEENTRY. This procedure, in turn, performs IPC with

the memory manager process where segment creation ultimately

is accomplished. A success code is returned in an IPC mes-

sage from the memory manager process via the distributed me-

mory manager to the CREATE SEGNENT procedure to indicate

success or failure as appropriate. This success code is

checked by the Segment Manager to ensure confinement would

not be violated if it is returned to the calling process'

supervisor domain. Only after the success code has been re-

turned can the action of segment creation be considered com-

plete. Segment creation does not imply the ability to re-

ference that segment; HAKNKNOWN will accomplish that.
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2. D22& AASAL m

The function that deletes a segment (i.e., deletes a

segment from SASS) is DELETESEGRENT. Validation of parane-

ters and security checks are performed here similar to (but

fewer than) the CREATESEGMENT checks. The distributed me-

mory manager is then called to cause IPC with the memory

manager process, where segment deletion is realized through

secondary storage deallocation and alias table entry dele-

tions. DELETESEGRENT is passed as arguments: (1) Men-

torSegNo and (2) EntryNo. Conversion of the Men-

tor_Seg_No to a KST index is accomplished first. The

pointer to the base of the KST is located and returned, as

before. The mentor segment is c..ecked to ensure it is

known, again, by verifying that its own HBSEGNo (mentor

segment number) entry in the KST is not the NULLSEG. The

process classification is obtained from the TC and checked

(by a call to CLASSEQ) to ensure it is equal to the mentor

segment classification, since deleting an entry requires

write access to the alias table. If all checks are satis-

factory, then the mentor segmentfs afnandle pointer is der-

ived. This pointer and the mentor segment alias table entry

number are passed in a call to the distributed aenory aanag-

er procedure MMDELETEENTRY. It then performs IPC with the

memory manager process where segment deletion is accom-

plished and a success code is returned as before.
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3. hk2 & 1Ss*nt Known

The function that makes a segment known (i.e., adds that

segment to the process' address space by assigning a segment

number, updating the KST, and causing the memory manager

process to "activate" the segment (that is, add it to the

AST )) is MAKE_KNOVN. Making a segment known is the way the

Supervisor declares its intention to use a segment.

!MKE_KNO3N is passed as arguments: (1) RentorSeg_No, (2)

EntryNo, and (3) AcessDesired (e.g., write, read, or

null). It returns (1) a success code, (2) the access al-

loved to the segment, and (3) the segment number. Conver-

sion of the mentor segment number to a KST index, finding

the KST pointer, and verifying that the mentor segment is

known occur as previously discussed.

There are three basic cases that may occur in

MAKE-KNOWN: (1) the segment is already known (has an entry

in the KST), (2) the segment is not known and there is a

segment number available, or (3) the segment is not known

and there is no segment number available.

a search is made of the KST using each record's (seg-

ment's) MSBGVo (mentor segment number) and EntryNumber

fields as the search key. If these two fields match the in-

put values RentorSeg_No and Entry_No, then the record in-

dexed is that of the desired segment, thus the segment to be

made known is already known. In this case, all that need be

done is to return the success code, segment number (convert-
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ed from the index by adding to it the number of kernel seg-

ments), and the access allowed (equal to the AccessKode en-

try in the KST for the already known segment).

During the search of the KST, the ASEGNo field is also

checked to see if it contains the MGLL_SBG entry (this im-

plies that the segment number associated with the record is

"available"). The first tine this is noted, the index is

saved. Note the first available index is saved since it is

desired to assign segment numbers at the *top" of the KSZ to

keep it dense there. When the search does not find that the

segment is already known, the index for the available seg-

sent number is retrieved and converted to segment number by

adding to it the number of kernel segments. If this index

is the OULLSEG entry, then there is no segment number avai-

lable. In this event, the success code is set to

NO_SEGAVAIL, the segment number is assigned MULL SEG, and

access allowed is set to UULL ACCESS (this is the third case

mentioned). if the index is not equal to IULLSEG and con-

version to segment number has occurred then the Traffic

Controller is called to provide the DBASNo (descriptor base

reqister number) for the current process. The DBRENo is

used by the memory manager process as an index in the

,,U_Iaage and the local AST. The distributed memory manager

procedure H_&ctivate is called; it is passed the DBR nun-

ber, the pointer to the mentor segmentfs SEi1andle entry,

the mentor segment alias table Entry_No, and the segment

- 179 -



number. an-Activate performs the normal interface function

(performs IPC with the memory manager process procedure that

updates the local and global IST's) and also updates the KST

entry for the new segment's INHandle entry (returned from

the memory manager process). It also returns to the Segment

manager the success code, the segment classification, and

the segment size from the memory manager process. If the

success code is "succeeded" then the issue of access to be

granted must be resolved. The process classification is ob-

tained from the TC and passed with the segment classifica-

tion to the NDS Module procedure CLASSGE. If the

CONDITIOMCODE returned is FALSE then access allowed is

NULLACCESS, the segment number is MULLSEG, and

MR-DEACTIVITE is called to deactivate the segment. An appro-

priate error code is returned. If it is greater than or

equal then the access allowed is assigned as follows: (1)

the two classifications are compared again--this time to see

if equal; (2) If they are equal, then the access allowed is

either read or write per the access desired; (3) if they are

not equal (i.e., the process class is greater than the seg-

ment class) then the access allowed is read. Finally the

KST entries for that segment number (more accurately for its

index in the KST) are filled with the appropriate informa-

tion (e.g., IN_CORE is false, etc.). If the success code

returned from the aemory manager process via the distributed

memory manager is not "succeeded", then the segment number
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is set to NULLSEG and the access allowed is set to

N ULL-ACCESS.

'S. k2s j affaun Unknow (ZMABt1
The function that makes a segment unknown (i.e., removes

that segment from the process' address space--by updating

the KST and causing the memory manager process to udeacti-

vate ," the segment) is TERBINATE. It results in removal of

the H_SEG_Mo (mentor segment number) entry from that seg-

ment's KST record. Terminate is passed the segment number

of the segment to be terminated as an argument. It returns

a success code. Conversion of the segment number to a KST

index, finding the KST pointer, and verifying that the seg-

ment is known occurs in the same manner as previously dis-

cussed. The next check is to verify that the segment is nor

still loaled in the process' virtual core (viz., it has been

"swapped-out"). If not, an error code is returned and the

user must cause the Segment manager extended instruction

SNSVAPOUT to be executed. The next check is to ensure

that the user is not attempting to terminate a Kernel seg-

ment. The first several segment numbers in a process' ad-

dress space will be used by Kernel procedures and lata

(though they will not be entries in the KST). Thus if there

were 10 Kernel segments, then the segment number to be ter-

minated must be greater than or equal to #10 (since the Ker-

nel segments used V0s 0-9). Thus a check is made to ensure
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that the segment number is not less than the number of Ker-

nel segments; otherwise an error code is returned. Next,

the segment number is checked to ensure that it is not lar-

ger than the maximum segment number allowable (if so, an er-

ror code is returned). If all checks are satisfactory, then

the seqent's HfHandle pointer and the process DBR_No are

obtained (as discussed before) and passed in a call to the

,flDeactivate procedure. It calls the memory manager pro-

cess procedure DR&CTIVkTB which removes or updates (as ap-

propriate) the entries in the local and global AST's.

5. :xau ~au La

The function that swaps a segment from secondary storage

to main memory (global or local) is SHBSWAPIN. It is

passed the segment number of the segment to be swapped in as

an argument and returns a success code. Conversion of the

segment number to a KST index, finding the KS? pointer, and

verifying that the segment number is known are accomplished

as previously discussed. If the check is satisfactory, then

the segsent's HHHandle pointer and the process DBR number

are obtained. They are passed with the segment's access

mode (from the KST) as arguments in the call to 83ISWAPIN.

It performs normal interface (IPC) functions and returns a

success code from the memory manager process' SWAPIN proce-

dure (where, if not already in core, allocation of main me-

mory space and reading the segment into main memory occurs).
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If the success code is "succeeded" then the segment's

INCORB entry in the KST is updated to show that the segment

is in main memory for this process (i.e., the entry is now

"true").

6. A S ~ggagn Out

The function that swaps a segment from main memory to

secondary storage is SH SWAP OUT. It is passed the segment

number of the segment to be swapped out as an argument and

returns a success code. The behavior of SA.SWAP_OUT is ex-

actly analogous to that of SS_SVAP_IN except that the seg-

mentfs KST IN-CORE entry is updated to reflect that the seg-

sent has been removed from main memory for this process

(i.e., the new entry is "false").

C. 19o1IG U cH2LAM_ M2Z AQRQJ

The Non-Discretionary Security odule implements the

non-discretionary security policy for the SASS. The NDS mo-

dule contains two procedures: CLASSEQ and CLASSGE; both

compare two labels (classifications) and determine if their

relationship meets that of the procedure's name (i.e.,

equal, or greater than or equal). Although the type of

checks being made are, in fact, compatibility checks, Simple

security Condition checks, etc, the VIDS Nodule does not re-

coqnize or need to recognize this. It simply uses an algor-

iths to determine if classification #1 u classification #2
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or if classification #1 >- classification #2, as appropri-

ate. It then returns a condition code of true or false in

accordance with the particular case. The earlier discussion

of label comparison in accordance with a partially ordered

lattice structure is relevant in discussing the lDS dodulels

algorithm. Consider the same "totally ordered" relationship

TS > S > C > U of levels and the *disjoint" relationship Cy

I I Nu I % of categories. Comparison of levels will be

numerical comparisons while comparison of categories will

use set theory comparison as a basis. If TS=4, S=3, C=2, U=1

are level numerical assignments, then the totally ordered

relationship is maintained (i.e., TS>S>C>U is still true).

Now consider the categories and sake the following assign-

ments: Cy-1, =29 Uu=4, %-0. Note that a classification may

have only one level and one category set (the category set

may contain several categories). Consider this example:

(TS, CyN . The level is TS (=4). The category is the set

Cy,N and numerically is formed by performing a logical OR

with the categories Cy and N. Sixteen bit representation of

this is:

Cy OR 

(0000 0000 0000 0001) OR (0000 0000 0000 0010)

= 0000 0000 0000 0011 = Cyi

If (TS, Cy,N ) is considered label #1 and (S, N ) as label

#2 then a comparison of the two labels would be:

(1) Compare level #1 with level #2 -- > > 3?

Clearly, the answer is yes.
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(2) Compare category #1 with category #2 -- is

(0000 0000 0000 0011) a superset of

(0000 0000 0000 0010), or more clearly

is the latter a subset of the former?

The answer is yes, and one way to show that is true is

by performing a logical OR of category #1 with category #2

and comparing the result to category #1. if the result of

the OR operation equals category #1 then category #1 is a

superset (not necessarily proper) of category #2. Since us-

age of the term subset is sore frequent than that of super-

set, this relationship will typically be stated as "category

#2 is a subset of category #1. To illustrate the above:

CyN OR I

(0000 0000 0000 0011) OR (0000 0000 0000 0010)

=0000 0000 0000 0011 - category #1.

This means , in this example, that category #2 is a sub-

set (not necessarily proper) of category #1. Since level #1

> level #2 and category #2 subset category #I then label #1

thes twolabels as the input classifications would return a

conitin zdeof false while CLASS-GE would return true.

bits) suprsterequirement of some DOD Specifications

for eight levels and si~xteen categories. This module uses

site it o helvland site isfrtecatego-

ry. ApniIistePLZ/&Sa listings for the IDS module.
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The CLASSEQ procedure performs comparison of two clas-

sifications (labels) and returns a condition code of true if

they are equal (an exact match of the two long words bit per

bit) or false if they are not.

2. M~2r.E 2 1giRl G1AC l ifatU Q2Q1

The CLASSGE procedure performs comparison of two clas-

sifications (labels) and returns a condition code true if

classification #1 is greater than or equal to classification

#2 or a condition code of false otherwise. For classifica-

tion #1 to be greater than or equal to classification #2,

the following must be true: (1) level #1 >= level #2 (deter-
mine this by simple numerical comparison of values) and (2)

category #2 subset category #1 (determine this by performing

a logical OR with the categories and comparing the result to

category #1 -- if they are equal then category #2 is a sub-

set of category #1).

Since PLZ/SYS allows passing only "simple" types in

calls, the labels were passed as long words (as opposed to

each being word arrays of length two). In access class label

is never interpreted outside the RDS Nodule. However, with-

in the NDS Module it is necessary to address the classifica-

tion's components separately (viz., level and category).

Thus, an "overlay" of the logical view of the classification

was created. This overlay was a record of type ACCESS-CLASS
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and it consisted of two fields: level -- 16 bit integer and

category -- 16 bit integer. A pointer type CPTR was declared

to be of type pointer to ACCESS-CLASS. Two other pointers

CLASS1_PTR and CLASS2_PTR were declared to be of type CPTR

and were set equal to the base address of CLASSI and CLASS2

respectively. This "overlay" of the record frame over the

two classification labels passed as arguments allowed the

desired component addressibility. Futhermore, the non-dis-

cretionary policy enforced by SASS can be changed from the

current DoD policy to another lattice policy by changing

(only) the NDS Module.

The Distributed Memory Manager Module performs as an in-

terface between the Segment Manager and the Memory Manager

Process. As its name implies, it is distributed in the ker-

nel domain of each Supervisor process. The key role per-

formed in this module is to arrange and perform interprocess

communication between its process (actually the VP) and the

memory manager process (VP). The module consists of eight

procedures. Six of the procedures are called directly by

Segment Manager procedures; they are MHCREATE_ENTRY,

Mr.DELETEENTRY, SM ACTIV&TE, MH DEACTIVATE, MSWAPIN, and

M-SW&POUT. The other two procedures are ',service,, proce-

dures called by multiple procedures; they are:

MM_GETDBR.VALUE and PERFORNIPC. The logic used in the
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first six procedures is somewhat uniform (except for

MMACTIVATE). Thus, the general logic will be explained

(with MNCUATEENTRY as an example) and it should suffice

as a description for all (except KM_ACTIVATE) procedures.

The service procedures will be described separately.

1. ftnu121a 21 Puocedom
Each procedure is invoked (and returns) on a one to one

basis with a corresponding procedure in the Segment Manager.

For example, CREATE-SEGEENT invokes MCRETEENTRY which

signals the CREATE-ENTRY procedure in the Memory Manager

Process Module. Associated with each procedure is an IPC

message "frame" to describe the unique format of the con-

tents of the message to be signalled to the memory manager

process. Similarly, there must be a message "frame" for re-

turn messages from the memory manager process; this frame is

the same for all but the HM_ACTIVATE procedure. Consider the

message frame for MCREATB_ENTR!; it consists of: (1) a

code to describe which function is to be performed (e.g.,

CREATECODE indicates that the CREATEINTRY procedure is the

intended recipient of the message), (2) Ia_Handle (an array

of three words), (3) EntryNo, (4) Size, and (5) Class. The

message frame has a filler (in this case) of one byte to en-

sure that it is of length 16 bytes. Zhe purpose of this

frame is to provide an overlay onto the actual message array

to be signalled and to facilitate loading the arguments into
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the message array. This is accomplished by having a pointer

of the type that points to the frame but by converting its

address so that it actually points to the base of the mes-

sage array. Consider these lines of PLZ/SYS code:

CEHSGPTR := CEPTR COBMSGPTR

CE-$SGPTR-.CBEATECODE := CREATEENTRYCODE

This code is putting a value into the structure pointed to

* by CE_MSGPTR at entry CREATECODZ. rhe key point is that

the frame of that structure is, in fact, CREATERSG (as de-

scribed before), but the physical location pointed to is the

message array. This is assured by having the pointer

CEHSGPTR (which points to a structure of type CREATERSG)

set equal to a pointer (CO_MSGPTR) to the actual message

array (COKMSGBUF). This is accomplished by the first line

of code. Zhe message array itself is never directly rofer-

enced, but rather the message array that is overlayed by the

message frame is filled in the format of the CREATEMSG

frame. In this example, the first two bytes of the message

array now contain the value of the constant

CREATEENTRYCODE. The remainder of the message array is

filled in the same manner (all procedures use the same no-

tion of a frame, although the frames have different for-

mats). The PERFORMIPC (perform interprocess communication)

procedure is called by all procedures at this point in their

execution. The key is that the argument passed is the mes-

sage array pointer not the pointer to the CREATE_NSG record
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(after all it is only an overlay frame -- linguistically, it

is only a type and is never declared as a structure requir-

ing memory storage allocation). When PERFOREIPC returns,

the message array contains a return message. This message

consists of only a success code and filler space in all cas-

es but AN-ACTIVATE. Interpretation of the return message is

performed in the same manner as loading the message array.

The retrieved success code is returned to the calling Seg-

ment Manager procedure. For 51_&CTIVATE, the return message

must be interpreted and values for success code, segment

size, and segment classification retrieved and returned to

the Segment Manager MAKEKNOEV procedure. The value for the

MR_Handle (called the G_ASHandle by the memory manager

process) must be retrieved and entered in the KST record for

this segment.

The final arrangements and actual performance of IPC is

completed by the internal procedure PERFORKIPC. By locating

the identity of the current physical processor (CPU) and us-

ing that identity to index into the MM_CPU_TABLE, the VP_ID

of the current memory manager is resolved, so that the memo-

ry manager process dedicated to this physical processor is

signalled. The call to KLOCK is, in fact, a disguised call

to the SPIN_LOCK procedure (since KLOCK calls SPINLOCK).

K_LOCK represents an ultimate (as yet unimplemented goal of
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a Kernel locking (wait-lock) system. In any event, the

G_ST lock must be set prior to signalling the memory maaag-

er process. After SIGNAL has been called, a call is made to

WAIT with the pointer to the message array as the argument.

The synchronization cycle that results is: (1) PERUORE._IPC

calls the ITC procedure SIGNAL with the memory manager VP_ID

and message array pointer as arguments; PERFOREIPC then

calls WAIT with the message array as the argument, (2)

SIGNAL causes the message array to be copied into the mes-

sage queue (in the ¥PT) of the appropriate VP_ID, (3) ulti-

mately, the signalled VP is scheduled; it had previously

called WAIT, passing a pointer to its own local message ar-

ray; the action of WAIT is to copy the message from the VPT

to the signalled process$ local message array; there it is

interpreted by the memory manager process main procedure and

the appropriate procedure is called for action (e.g.,

CREATE ENTRY), (4) when action is completed the memory man-

ager process fills its local message array with the appro-

priate return message and calls SIGNAL with a pointer to the

message and the original signalling process' VP_ID as argu-

ments, (5) SIGNAL causes the memory manager process$ message

to be copied into the VPT message queue for the appropriate

VP_ID, (6) that VP is eventually scheduled and through the

action of WAIT has the return message copied from its mes-

sage queue in the VPT to its local message array; WAIT then

returns to PERFORM-IPC. The G-&ST lock is unlocked and
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PERFORMIPC returns to the appropriate distributed memory

manager procedure.

The last procedure in the distributed memory manager is

88_GETDBR_V&LUE. This procedure simply provides the ser-

vice of translating a DBRVO (DBR number) into its appropri-

ate DBR address. It is called by the TCGETMORK procedure to

* allow it to call the ITC procedure SIAP_VDBR (remember that

presently the Inner Traffic Controller deals with the DBR as

the address of the appropriate RAU record in the 8UIhNAGE

while the Traffic Controller uses DBR as a DBE number which

indexes to the appropriate AU record).

* E. ,UIARX

The implementation of segment management functions and a

non-discretionary security policy for the SASS has been pre-

sented in this chapter. The implementation of the Segment

Manager Module, ion-Discretionary Security Nodule, and Dis-

tributed Memory Manager management demonstration was de-

scribed.

19
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Chapter III

CONCLUSIONS AND FOLLON ON WORK

The implementation of segment management for the securi-

ty kernel of a secure archival storage system has been pre-

sented. The implementation was completed on Zilog's Z8002

sixteen bit nonseguented microprocessor. Segmentation hard-

ware (Zilog's Z8010 Memory Management Unit) was not availa-

ble, therefore it was simulated in software as described by

Reitz (12]. The loop free modular construction used in the

implementation facilitates ease of expansion or modifica-

tion.

A non-discretionary security policy was implemented us-

ing a partially ordered lattice structure as a basis. En-

forcement was realized through an algorithm that compared

two labels and determined if their relationship was equal to

a desired relationship. Although the DaD security classifi-

cation system was represented, any non-discretionary securi-

ty policy that may be represented by a latt.ce structure nay

similarly be implemented. This implementation has shown that

by having the non-discretionary security policy enforced in

one module, changing to another policy requires changing

only this one module.
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Software engineering techniques used in previous work

emphasized the advantages of working with code that is well

structured, well documented, and ell organized. Despite be-

ing written in assembly language, Reitz' implementation of

multiprogramming and process management proved to be consis-

tent in style, clarity and documentation. This enhanced the

construction of a segment management demonstration which was

built onto his synchronization demonstration. Further, re-

finements made to his code (not necessitated by any failures

of his code) were relatively easily accomplished.

while the segment management implementation appears to

perform properly, it has not been subjected to a formal test

plan. Such a test plan should be developed and implemented.

The Memory Manager Process has been designed but not i-

plemented. Segment management implementation, provision for

IPC using aore practical size messages, and the detailed de-

sign of the memory manager by Moore and Gary [5], provide a

sound foundation for memory manager implementation. A frame-

work of the mainline code needed is provided in the memory

Manager Module of the demonstration code in Appendix J. Pri-

or to this implementation, forral testing of the segment

management implementation herein and the monitor implemented

by Reitz [12] should be completed.
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PART F

INPLEREUTATION O PROCESS RAMAGREN2 FOR A

SECURE ARCUIVAL STORAGE SYSTRI

This section contains excerpts from a Naval Postgraduate
School HS Thesis by A. R. Strickler [19]. The origins of
these excerpts are:

INTRODUCTION from Chapter I
IMPLEMENTATION ISSUES from Chapter III
PROCESS BANAGERENT IMPLERENTATION from Chapter IT
CONCLUSION from Chapter V

Minor changes have been made for integration into this report.
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Chapter II

INTRODUCTION

This thesis addresses the implementation of process man-

agemenr functions for the Secure Archival Storage System or

SASS. This system is designed to provide multilevel secure

access to information stored for a network of possibly dis-

similar host computer systems and the controlled sharing of

data amongst authorized users of the SASS. Effective pro-

cess management is essential to insure efficient use and

control of the system.

The major accomplishments of this thesis effort include

the provisions for efficient process creation and manage-

ment. These functions are provided through the establish-

ment of a system Traffic Controller and the creation of a

virtual interrupt structure. An effective mechanism for in-

ter-process communication and synchronization is realized

through an Event Manager that makes use of uniquely identi-

fied segments supported by eventcount and sequencer primi-

tives. k hardware controlled two domain operational envi-

ronment is created with the necessary interfacing between

domains provided by a software "gate" mechanism. Additional

support is provided through considerable work in the area of

database initialization and a technique for limited dynamic

memory allocation.
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This implementation was completed on the commercial AsC

Am96/'4116 honoBoard Computer with a standard flultibus inter-

face.
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Chapter XX1

I NPLEEZwTATIOI ISSUBS

Issues bearing on the implementation of process manage-

ment and refinements made to existing modules are presented

in this chapter. Process management for the SASS was pro-

vided through the implementation of the Traffic Controller

Module, the Event Manager Nodule, the Distributed Memory

Nanager Module, and a Gate Keeper Stub (system trap). addi-

tionally, since a demonstration/testbed was integral to the

testing and verification of the implementation, it was ne-

cassary to complete other supportive tasks. These suppor-

tive tasks included limited Kernel database initialization,

revised preempt interrupt handling mechanisms, Idle process

definition and structure, and additional refinements to ex-

isting modules.

A. MAU =Z IZT1A I

Previous work on SASS has relied on statically built da-

tabases, which proved to be sufficient for demonstration of

a single processor, single host suppozted system. In the

current demonstration, multiple hosts are simulated, and the

Kernel data structures have been refined to represent a mul-

tiprocessor environment. Since a multiprocessor system was
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unavailable at the time of this demonstration, several

"runs" were made and traced, using different logical CPU

numbers, to show the correctness of this structure. Due to

this multiprocessor representation and simulation of multi-

ple hosts, the use of statically built Kernel databases was

no longer convenient. Therefore, it became necessary to

provide initialization routines for the dynamic creation of

those Kernel databases required for this implementation.

while it was not the intent of this effort to implement sys-

tem initialization, care was taken in the writing of these

initializing routines so that they might be utilized in the

system intialization implementation with, hopefully, minimal

refinement. Database initialization was restricted to those

databases existing in the Inner Traffic Controller and the

Traffic Controller. Limited elements of the Known Segment

Table (KST) and Global Ictive Segment Table (G_A&S) were

also created for demonstration purposes.

1. Inr zxiW2 ca&lrall LailAUA1sli~an

A "Bootstrap Loader" Nodule, vhich logically exists at a

higher level of abstraction within the Kernel, was created

to initialize the databases of the Inner Traffic Controller.

This initialization includes the creation of: 1) the Pro-

cessor Data Segment (PRDS), 2) an MMU Map, 3) Kernel domain

stack segments for Kernel processes, 41 allocation and up-

dating of SRO entries for Kernel processes, and 5) Virtual

Processor fable (VPT) entries.
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The PRDS was loaded with constant values that specify

the physical CPU ID, logical CPU ID, and number of VP's al-

located to the CPU. A design decision was made to allocate

logical CPU ID's in increments of two (beginning with zero)

so that they could be used to directly access lists indexed

by CPU number. The NEU map, constructed as a "byte" map,

was created to specify allocated and free ABU Image entries.

k separate procedure, CRBATZSTACK, was created to es-

tablish the initial Kernel domain stack conditions for Ker-

nel processes. k discussion and diagram of these initial

stack conditions is presented in the next section.

ALLOCATEMMU checks the ABU Hap and allocates the next

availabe HHO'entry to the process being created. The PRDS

is inserted in the allocated NEU entry and the DBR number is

returned to the calling procedure. The DBR number (handle)

is merely the offset of the DBR in the ABU Image. Since the

ITC deals with an address rather than a handle, a procedure,

BGET_DBR_&DDR, was created to convert this 3ffset into a phy-

sical address. UPDATENU._IBAGB is the procedure which

creates or modifies NU Image entries. UPDATE_ANUINAGE ac-

cepts as arguments the DBR number, segment number, segment

attributes, and segment limits. To facilitate process

switching and control, various process segments must possess

the same segment number system wide. This is accomplished

during initialization through the use of the

UPDAT_NUU_IHAGE procedure. In the ITC, these segments in-
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a

clude the PRDS (segment number zero) and the Kernel stack

segment (segment number one).

The final task required in ITC intialization is the

creation of the VPT. The YPT header is initialized with the

"running" and "ready" lists pointers set to a 'nil" state,

and the "free" list pointer set to the first entry in the

message table. Virtual Processor entries are inserted in

the main body of the ¥PT by the UPDATE_VP_TABLE procedure.

Entries are first made for the VP's permaneL.ly bound to the

Memory Manager and Idle processes. The VP bound to the 8A

process is given a priority of 2 (highest), and the VP bound

to the Idle process is given a priority of 0 (lowest). The

External VP ID for both of these VP's is set to "nil" as

they are not visible to the Traffic Controller. The remain-

ing VP's allocated to the CPU (viz., TC visible VP's) are

then entered in the VPT with a priority of 1 (intermediate),

and their "idle" and "preempt" flags are set. The preempt

flag is set for these TC visible VP's to insure proper sche-

duling by the Traffic Controller. The DBR for these remain-

ing VP's is initialized with the Idle process DBR. A dis-

cussion of "idle" processes and VP's will be provided later

in this chapter. The External VP ID far each TC visible VP

is merely the offset of the next available entry in the

EXTERNAL VP LIST. This External VP ID is entered in the

VPT, and the corresponding VP ID (viz., VPT Entry I) is en-

tered in the EXTERNAL VP LIST.

2
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Once these VPT entries have been made, it is necessary

to set the state of each VP to "ready" and thread them (by

priority) into the appropriate ready list. A VPT threading

mechanism was provided by Reitz (12] in procedure

MAKE_READY. However, it was desired to have a aore general

threading mechanism that could be used for other lists.

Procedure LISTINSERT was created to provide this general

threading mechanism. LISTINSERT is logically a "library"

function that exists at the lowest level of abstraction in

the Kernel. This function threads an object into a list

(specified by the caller) in order of priority, and then

sets its state as specified by the calling parameters.

Once the "Bootstrap Loader" has completed LTC initiali-

zation, it passes control to the ITC GETWORK procedure to

begin VP scheduling.

2. ZTrafg Q2=21iU.Lji.ial"I&"A

The initialization routines for the TC include TC_INIT,

CREATEPROCESS, and CREkTE_KST. These routines are called

from the Memory manager process. The li process was chosen

to initiate these routines as it is bound to the highest

priority VP and will begin running immediately after the In-

ner Traffic Controller is initialized. Procedure

M_IALLOCATE was written to allocate memory space for data

structures during initialization (viz., Kernel stacks, user

stacks, and KST's). Memory space is allocated in blocks of
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100 (hex) bytes. MIIALLOCATE is merely a stub of the memory

allocating procedure designed by Mcore and Gary (5].

It wa- necessary to pass long lists of arguments to the

TC for initialization purposes. To aid in this passing of

parameters, a data structure template was used. This temp-

late was :reated by declaring the parameters as a data

structure in both the sending and receiving procedures, and

then imaging this structure at absolute address zero. The

process' stack pointer was then decremented by the size of

the parameter data structure, and the parameters were loaded

into this data structure indexed by the stack pointer. This

template made it very easy to send and receive long argument

lists using the process' stack segment.

TC_IN7I initializes the APT header and virtual interrupt

vector (discussed later). Each element of the running list

is marked "idle", the ready and blocked lists are set to

"nil", and the number of VP's and first VP for each CPU are

entered in the VP table. The address of the virtual preempt

handler _s then passed to the ITC procedure CREATEINTVEC

for insertion in the virtual interrupt vector.

CREATE-PROCESS intializes user processes and creates en-

tries in the APT. ALLOCATE-MU is called to acquire a DBR

number, and in APT entry is created with the process de-

scriptors (viz., parameters). The process is then declared

"ready" and tar, ,ed into the approciate ready list by

calling the threading finction, LIST_INSERT. A user stack
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is allocated and UPDATE HMUIBAGE is called to include the

user stack in the NMU as segment number three. The user

stack contains no information or user process initialization

parameters (viz., execution point and address space) as all

processes are initialized and begin execution from the Ker-

nel domain. Next, a Kernel domain stack is allocated and

included in the MMU Image. A design decision was made to

initialize the Kernel stacks for user processes with the

same structure as the Kernel process' stacks. The rationale

for this decision is presented in the next section. As a

result of this decision, it became possible to use the

CREATESTACK procedure in building Kernel domain stacks for

both Kernel and user prosesses. CREATE-ST&CK was therefore

used as a library function and placed in the library module

with LIST-INSERT.

Finally, a Known Segment Table (KST) stub is created to

provide a means of demonstrating the mechanism provided by

the eventcounts and sequencers for interprocess communica-

tion (IPC) and mutual exclusion. Space for the process' KST

is created by calling NALLOCATE. The KST is then included

in the process' address space, as segment number two, by

UPDATE_3dJIAGE. Initial entries are made in the Known

Segment Table by procedure CREATEKST. CREATEKST makes an

entry in the KST for the "root" and marks the remaining KST

entries as "available." The nique_ID portion of the root's

handle (viz., upper two words) is initialized as -1 (for
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convenience) and the GAST entry number portion of the han-

dle (viz., lowest word) is initialized with zero.

3. A JEQUJI ZRn ai11iA 1nnSUaMaM
As already mentioned, the Memory Manager Process prepares

the arguments utilized by TC_INIT, CREATEPROCESS, and

CREATEKST for TC initialization and user process creation.

Additionally, the MM process creates a Global Active Segment

Table (GAST) stub utilized fcr demonstration of event data

management. The GIST stub is declared in a separate module

(viz., the DEMO_DATABASE Module) with the format prescribed

by Moore and Gary (5]. However, the only fields initialized

and utilized by this implementation are UNIQUEID,

SEQUENCER, INSTANCE 1, and INSTANCE 2. The eventcounts and

sequencer fields are initialized as zero whenever an entry

is created in the GAST. The UNIQUEID is created just to

support this demonstration and does not reflect the seg-

ment's unique identifier as specified by Moore and Gary [5].

In this demonstration, UNIQUE_ID is built with the parame-

ters passed to MMNACTIVATE. The first word in UN2-QUE_ID is

the GkST entry number of the segment's parent, and the sec-

ond word is the segment's entry number into the alias table.

The UNIQUE_ID together with the offset of the segment's en-

try in the GAST comprise the segment HANDLE maintained in

the KST. The first entry in the GAST is reserved for the

root, and is initialized with an Unique_ID of minus one
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(-1). It should be noted that any call to 88_ACTIVATE for a

segment already possessing an entry in the GkST will not

effect any changes to that entry. This is to insure that a

sinqle GAST entry exists for every segment as specified by

Moore and Gary [5].

B . RZARsHINTERUPTSE%

Various refinements were made in the handling of both

physical (hardware) and virtual (software) preempt inter-

rupts. & hardware preempt is a non-vectored interrupt that

invokes the virtual processor scheduling mechanism (viz.,

ITC GETWORK). & virtual preempt is a software vectored in-

terrupt that invokes the user process scheduling mechanism

(viz., TCGETWORK). This implementation provides the notion

of a virtual interrupt that closely mirrors the behavior of

a hardware interrupt. In particular, there are similar con-

structs for initialization of a handler, invokat-ion of a

handler, masking of interrupts, and return from a handler.

is with most hardware interrupts, a virtual interrupt can

occur only at the completion of execution for an "instruc-

tion," where each kernel entry and exit for a process delim-

it a single "virtual instruction."
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1. ftki& Zuanl Handl2K

The physical preempt handler resides in the virtual pro-

cessor manager (viz., Inner Traffic Controller). The func-

tions it perform are: 1) save the execution point, 2) in-

voke ITC GETMORK, 3) check for virtual preempt interrupts,

4) restore the execution point, and 5) return control via

the IRET instruction. Reitz (12] included the hardware

preempt handler in ITC GETgORK by establishing two entry

points and two exit points, one for a regular call to

GETWORK and another for the preempt interrupt. He had a se-

parate procedure, TESTFREEAPT, that was used to check for

the occurrence of virtual preempt interrupts. This structure

works nicely, but it requires some means of determining bow

GETWORK was invoked so that the proper exiting mechanism is

used. This was resolved by incorporating a preempt inter-

rupt flag in the status register block of every process'

Kernel domain stack segment. A design decision was made to

restructure the hardware preempt handler into a single and

separate procedure, PHTS_PREEHPTHANDLER. This allowed ITC

GETWORK to have a single entry and ex.t poirit, and it did

away with the necessity of maintaining a preempt interrupt

flag in the process stacks. PHYSPREEMTHANDLER was con-

structed from the preempt handling code in GETWORK and

procedure TESTPREERPT. TEST-PREZEBPT was deleted from the

ITC as its functions were performed by PH!S_?REBNPT-ffIDLER.
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& further refinement was made to the hardware preempt

handler dealing with the method by which the virtual preempt

handler was invoked. Reitz (12] invoked the virtual preempt

handler from TEST_PREEEPT by means of the "call" instruc-

tion. Since the virtual preempt handler logically exists at

a higher level of abstraction than the ITC, this invocation

violated our notion of only allowing "calls" to lower or

equal abstraction levels. Bowever, this deviation was ne-

cessitated by the absence of a virtual interrupt structure.

This problem was alleviated by creating a virtual interrupt

vector in the ITC that is used in the same way as the hard-

ware interrupt vector. The virtual preempt was given a vir-

tual interrupt number (zero). The virtual interrupt handler

is then invoked by means of a "Jump" through the virtual in-

terrupt vector for virtual interrupt number 0. This invoca-

tion occurs in the sane manner that the handlers for hard-

ware interrupts are invoked. The virtual interrupt vector

is created by procedure CREATB_INTVEC. CREATE_.T_¥EC ac-

cepts as arguments a virtual interrupt number and the ad-

dress of the interrupt handler. The creation of the virtual

preempt entry in the virtual interrupt vector is accon-

plished at the time of the Traffic Controller initialization

by TC_IIT.
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2. fyljrjtjj i , Hand IM

Thu virtual preempt handler (VIRT_PREBSPTHANDLBR) re-

sides in the user process manager (viz., the Traffic Cont-

roller). The functions performed by VBT.PREEMPTHANDLBR

are: 1) determine the VP ID of the virtual processor being

preempted, 2) invoke the process scheduling mechanism (viz.,

TCGETWORK), and 3) return control via a virtual interrupt

return. The correct VP ID is obtained by calling £UJNING_VP

in the ITC. The Active Process Table is then locked, and

the state of the process running on that VP is changed to

"ready." at this time, process scheduling is effected by

calling TCGETVORK. Once process s heduling is completed,

the APT is unlocked and control is returned via a virtual

interrupt return. This virtual inte-ript return is merely a

jump to the PREERPTRET label in the hardware preempt han-

dler (This jump emulates the action of the IRET instruction

for a hardware interrupt return). This label is the point

at which the virtual preempt interrupts are unmasked.

All Kernel processes are initialized to appear as though

they are returning from a hardware preempt interrupt. All

user processes initially appear to be returning from a vir-

tual preempt interrupt. Therefore, the initial conditions

of a process' Kernel domain stack is largely influenced by

the stack manipulation of the preempt handlers. Figure 44

illustrates the initial Kernel domain stack structure for

all system processes.
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The initial Kernel Flag Control Word (FCW) value is

"5000", indicating non-segmented code, system mode of opera-

tion, non-vectored interrupts masked, and vectored inter-

rupts enabled. The Current Stack Pointer value is set to

the first entry in the stack (viz., SP). The [BET Frame is

the portion of the Kernel stack affected by the IRET in-

struction. The first element, Interrupt 1D (set to "FFF")

is merely popped off of the stack and discarded. The next

element, Initial FCV, is popped and placed in the system

Flag Control Word. Initial FCV is set to "500" for Kernel

processes and "1800" (indicating normal mode with all inter-

rupts enabled) for user processes. The final element of the

IRET frame, Initial IC is popped off of the stack and

placed in the program counter (PC) register. This value is

initialized as the entry address of the process in question.

The "register" entries on the stack represent the ini-

tial register contents for the process at the beginning of

its execution. Since the Kernel processes (viz., MR and

Idle) do not require any specific initial register states,

their entries reflect the register contents at the time of

stack creation. Initial register conditions are used to

provide initial "parameters' required by the user processes.

This will depend largely upon the parameter passing conven-

tions of the implementation language. The means for regis-

ter initialization was provided through CREATE_PROCESS; how-

ever, the only initial register condition used for the user
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processes in this demonstration was register #13. aegister

#13 was used to pass the user ID/Host number of the process

created. This value is utilized by the user process in ac-

tivating the segment used for inter-process communication

between a Host's File manager and 1/O processes. Another

loqical parameter passed to the user processes is the root

segment number. This did not require a register for passing

in the demonstration as it is known to be the first entry in

the KST for all processes. The N_S_P entry on the stack

represents the initial value of the normal stack pointer.

For user processes, this value is obtained when the Supervi-

sor domain stack for that process is created. For Kernel

processes, this value is set to NFFFF" since they execute

solely in the Kernel domain and have no Superivsor domain

stack. The Preempt Return Point specifies the address where

control will be passed once the process' VP is scheduled and

the "return" from ITC GETVORK is executed. For Kernel pro-

cesses, this is the point within the hardware preempt han-

dler where the virtual processor table is unlocked. For

user processes, this is the point within the virtual preempt

handler where the Active Process Table is unlocked.

it is important to note that if the APT was not unlocked

when a user process began its initial execution, the system

would become deadlocked and no further process scheduling

could occur. It should be further noted that the initial

stack conditions for user processes do not reflect a valid
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history of execution. The "normal" history of a user pro-

cess returning from ITC GETVORK after a virtual preempt in-

terrupt would reflect the passing of control through

SVAP_VDBR and TCGETWORK to the point in the virtual preempt

handler where the APT is unlocked. Another "possible" his-

tory could reflect the occurrence of a hardware preempt in-

terrupt at the point in the virtual preempt handler where

the APT is unlocked. Such a history would be depicted by

replacing the current top of the stack with the return point

into the hardware preempt handler (viz., at the point of

virtual preempt interrupt unmasking) and an additional hard-

vare preempt interrupt frame whose IC value in the IRET

frame is the point in the virtual preempt handler where the

APT is unlocked. The current initial stack condition for

user processes was chosen for its ease of understanding and

its clear depiction of the fact that the structure of a Ker-

nel domain stack is the same for both Kernel and user pro-

cesses.

in the SASS design, there logically exists a Kernel do-

main "Idled process for every physical processor in the sys-

4 tem and a Supervisor domain "Idle" process for every "TC vi-

sible" virtual processor in the system. These processes are

necessary to insure that both the VP scheduler (viz., ITC

GETVORK) and the process scheduler (TC_GBTWOBL will always
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have some object 3schedule. hence precluding any CPU or VP

from ever having an undefined execution point. since theI Kernel domain Idle process performs no useful work, it could

be included within the ITC by means of an infinite looping

mechanism. The Kernel Idle process was maintained separate-

ly, however, as it is hoped that future work on SASS will

provide this Idle process with some constructive purpose

(e.g., performing maintenance diagnostics).

The Supervisor domain Idle processes (hereafter referred

to as TC Idle processes) are scheduled (bound) on VP's when

there are no user processes awaiting scheduling. Since a TC

Idle process performs no user constructive work, ye do not

want any VP executing a TC Idle process to be bound to a

physical processor. In other words, a VP bound to a TC Idle

process assumes the lowest system priority (represented by

the "idle flag"). Therefore, any such VP will have its idle

flag set and will not be scheduled unless it receives a vir-

tual preempt interrupt. Such an interrupt will allow the VP

to be rescheduled by the Traffic Controller. it should be

obvious, at this point, that a TC Idle process will never

actually begin execution on a real processor. This know-

a ledge allowed a design decision to be made to only simulate

the existence of TC Idle processes. At the TC level, this

was accomplished by a constant value, IDLEPROC, that was

used as a process ID in the APT running list, thus preclud-

ing the necessity of any "Idle" entries in the APT. It the
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ITC level, any VP marked "Idle" (viz., the idle flag set)

was qiven the DBR number (viz., address space) of the Kernel

Idle process solely to provide the use of a Kernel domain

stack for rescheduling of the VP.

D. URQIZIAL UUJI UIIUU

In addition to those already discussed, several other

refinements to existing Kernel modules were effected in this

implementation. One of these refinements deals with the way

virtual processors are identified by tue Traffic Controller.

In the current implementation, all TC visible virtual pro-

cessors are given an External VP ID which corresponds to its

entry number in an External VP List. This required a sodi-

fication to the ITC procedure RUNNING_3P. The benefits der-

ived from this refinement included the ability to directly

access the External VP ID in the Virtual Processor Table

vice the requirement of a run time division to compute its

value and the ability to use the External VP ID as an index

into the TC running list.

Refinements were also made to the existing Memory Manag-

er, File Manager and 10 process stubs used for demonstration

purposes. These refinements were largely associated with

the eventcount and sequencer mechanisms utilized in this im-

plesentation. The current status of these processes is pro-

vided in this report.
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The remaining refinements deal largely with the HMU In-

age. In Moore and Gary's [5] design, the MMU Image was man-

aged by the Memory Manager process. This was largely be-

cause the MMO Image is a processor local database and would

I seem well suited for management by the non-distributed Ker-

nel. In fact, the HMU Image is utilized mainly by the ITC

for the multiplexing of process address spaces. Therefore,

in the current design, the HBU Images are maintained by the

Inner Traffic Controller. However, the HBU header proposed

by Moore and Gary (viz., the BLOCKS-USED and

i MAXIMUMAVAILABLEBLOCKS fields) was retained in the Memory

Manager as it is used strictly in the management of a pro-

cess' virtual core and is not associated with the hardware

In Wells' design E201, the Traffic Controller used the

linear ordering of the DBE entries in the MAU Image as the

DBR handle (viz., 1,2,3...). This required a run tine divi-

sion operation to compute the DBH nuaaer, and a run time

multiplication operation, by MMGETDBRVALUE, to recompute

the DBR address for use by the ITC. In the current design,

the offset of the DBR entry in the ABU Image (obtained at

the time of NEU allocation) is used as the DBR handle in the

Traffic Controller. Furthermore, SWAPVDBR was refined to

accept a DBR handle rather than a DBA address to preclude

the necessity of the Traffic Controller having to deal with

HMO addresses. DBR addresses are computed only within the
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ITC (viz., by procedure GETDBEADDR) by adding the value of

the DBR handle to the base address of the MMU image. Since

DBE addresses are now used solely within the ITC, procedure

MM-GET-DBR VALUE was no longer needed and was deleted from

the Memory Manager.

E. =ilfljY

The primary issues addressed in this thesis effort have

been presented in this chapter. Aside from the process man-

agement functions, this description included a mechanism for

limi.ted Kernel database initialization, a revised preempt

interrupt handling mechanism, the creation of a virtual in-

terrupt structure, a definition of "idle" processes and

* their structure, and a discussion of the minor refinements

effected in existing S&SS modules. k detailed description

of the implementation of process managem.nt functions for

the SASS is presented in the next chapter.
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Chapter 1XII

i PROCESS MANAGEBET [BPLEBENTATION

The implementation of process management functions and a

gate keeper stub (system trap) is presented in this chapter.

The implementation is discussed in terms of the Event Manag-

er, Traffic Controller, Distributed Memory anager, User

Gate, and Kernel Gate Keeper modules. A block diagram dep-

icting the structure and interrelationships of these modules

is presented in Figure 45. Support in developing the Z8000

machine code for this implementation was provided by a Zilog

MCZ Developmental System operating under the RIO operating

system. The Developmental System provided disk file manage-

ment for a dual drive, hard sectored floppy disk, a line

oriented text editor, a PLZ/ASM assembler, a linker and a

loader that created an executable image of each Z8000 load

module. An upload/download capability with the &m96/1116

MonoBoard computer was also provided. This capability,

along with the general interfacing of the a96/116 into the

SASS system, was accomplished in a concurrent thesis endea-

vor by Gary Baker. Bakers work =elating to hardware ai-

tialization in SASS, will be published upon completion of

his thesis work in June 1981.
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k. Sli? lUlll! llg.LB

The eventcoant and sequencer primitives (11], which are

systes-wide objects, collectively comprise the event data of

SASS. As mentioned earlier, this event data is tied direct-

ly to system segments and is stored in the Global Active

Segment Table. There are two eventcounts and one sequencer

* for every segment in the system. These objects are identi-

fied to the Kernel in user calls by specification of a seg-

ment number. Once this segment number is identified by the

Kernel, the segment's handle can be obtained from the pro-

cessf Known Segment Table. The segment handle identifies

the particular entry in the GAST containing the event data

desired.

The Event Manager module manages the event data within

the system and provides the mechanism for interprocess com-

munication between user processes. The Event Manager con-

sists of six procedures. Four of these (Advance, Await,

Read, and Ticket) represent the four user extended instruc-

tions provided by the Event Manager. The remaining two

procedures provide internal computational support to include

necessary security checking. The Event Manager is invoked

solely by user processes, via the Gate Keeper, through uti-

lization of the extended instruction set provided. For ev-

ery Event Manager extended instruction invoked by a user

process, the non-discretionary security is verified by com-
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paring the security access classificition of the process in-

voking the instruction with the classification of the object

(segment) being accessed. Access to the user process' Known

Segment Table is required by the module in order to ascer-

tain the segment handle and security class for a given seg-

ment number. The PLZ/ASI assembly language listing for the

Event Manager module is provided in Appendix A. A more de-

tailed discussion of the procedures comprising the Event

Manager follows.

1. sRUI 2ft,. 4. e.

The procedures GET_HANDLE and CONVERT.A.ID_VERIFY provide

internal support for the Event Manager and are not visible

to the user processes. Procedure CONVERTANDVERIFY is in-

voked by the four procedu-es representing the instruction

set of the Event Manager. The input parameters to

CONVERT AND VERIFY are a segment number and a requested mode

cf access (viz., read or write). CONVERTkNDVERIPY returns

a pointer to the segnent's handle and a success code.

Procedure GET_HAIDLE is i.nvoked solely by

CONTEBT_AINDTEIFY. The input parameter to GET HANDLE is

the segment number received as input by CONVERTAND_VERIFY.

GZT_HANDLE returns a pointer to the segment's handle, a

pointer to the segment's security classification, and a suc-

cess code. A discussion of the functions provided by these

support procedures follows.
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Procedure GET-HANDLE translates the segment number, re-

ceived as input, into a KST index number and verifies that

the resulting index number is valid. Next the base address

of the process' KST is obtained from procedure

ITCGETSE3_PTR. The KST index number is then converted

into a KST offset value and added to the base address to ob-

* tain the appropriate KST entry pointer for the segment in

* question. A verification is then made to insure that the

referenced segment is "'known" to the process. If the seg-

ment is not known, an errcr message is returned to

CONVERTANDVERIFY. Otherwise, a pointer to the segment's

handle is obtained to identify the segment to the memory

manager. A pointer to the segment's security class entry in

the KST is also returned for use in appropriate security

checks.

Procedure CONVZRT_ANDVERIF! provides the necessary

non-discretionary security verification for the extended in-

struction set of the Event Manager. Procedure GET-HANDLE

is invoked for segment number verification and to obtain

pointers to the segment's handle and security class. If

GET-HANDLE returns with a successful verification, the pro-

cess' security class is compared to the segment's security

class to verify the mode of access requested. A request for

"write" access causes invocation of the CLASSEQ function in

the Non-Discretionary Security Module to insure that the se-

curity classification of the process is equal to the classi-
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fication of the eventcount or sequencer, which is the same

as that of the segment. Otherwise, the CLASS_GE function is

called to verify that the process has read access. If the

appropriate security check is unsuccessful, an error code is

returned by COMVERT_&NDVERIFT. Otherwise, the segment han-

dle is returned along with a success code of "succeeded" in-

dicating that the user process possesses the necessary se-

curity clearance to complete execution of the extended

4 nstruction.

2. m

Procedure READ ascertains the current value of a user

specified eventcount and returns its value to the caller.

The input parameters to READ are a segment number and an

instance (viz., an event number). CONVERT_AND_VERIFY is in-

voked with a "read" access request to obtain the segment's

handle and necessary verification. "Read" access is suffi-

cient for this operation as it only requires observation of

the current eventzount value and performs no data modifica-

tion. 7f verification is successful, procedure

8MREAD_EVENTCOUNT is called to obtain the eventcount value.

3. =1itt,

Procedure TICKET returns the current sequencer value for

the segment specified by the user. CONVERTLID_ERIFY is

called with a request for write access to obtain verifica-
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tion and the segment handle. Write access is required be-

cause once the sequencer value is read it must be increment-

ed in anticipation of the next ticket request. Once verifi-

cation is complete, AmTICKET is invoked to obtain the se-

quencer value that is returned to the user process. It is

noted that every call to TICKET for a particular segment

* number will return a unique and time ordered sequencer va-

lue. This is because the sequencer value may only be read

-- within NO-TICKET while the GAST is locked, thereby prevent-

ing siaultineous read operations. Futheraore, once the se-

quencer value is read it is incremented before the GST is

* unlocked.

4 . "

Procedure AMIT allows a user process to block itself

until some specified event has occurred. The parameters to

WIIT include a segment number and instance, which identify

a particular event, and a user specified value which identi-

fies a particular occurrence of the event. Verification of

read access and a pointer to the segment's handle is ob-

tained from procedure CONVERT_kND_VERIF!. Procedure

TCAAIT is invoked to effect the actual waiting for the

event occurrence. TC AWAIT will not return to AWAIT until

the requested event has occurred. It is noted that AWAIT

makes no assumptions about the event value specified by the

user. Therefore, the Kernel cannot guarantee that the event
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specified by the user will ever occur; this is the responsi-

bility of other cooperating user processes.

5. A1Y. AR

Procedure ADVANCE allows a user process to broadcast the

occurrence of some event. This is accomplished by incre-

menting the value of the eventcount associated with the

event that has occurred. The parameters to ADVANCE include

a segment number and instance which identify a particular

event. The calling process must have write access to the

identified segment as modification of the eventcount is re-

quired. Verification of write access and a pointer to the

segaent s handle is obtained through procedure

CONVERTND ¥ERIFY. Procedure TCADVANCE is invoked to per-

form the actual broadcasting of event occurrence.

B. TAkttL. COTRJ MOD jL

The primary functions of the Traffic Controller module

are user process scheduling and support of the inter-process

communication mechanism. The Traffic Controller is invoked

by the occurrence of a virtual preempt interrupt and by the

Event Manager and the Segment Manager through the extended

instruction set: TCAdvance, TC_Avait, Process_Class, and

GetDBRNUMBER. The Traffic Controller module is comprised

of nine procedures. Four of these procedures represent the

extended instruction set of the Traffic Controller. A de-
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tailed discussion of six of the procedures contained in the

Traffic Controller module is presented below. The remaining

three procedures (viz., TCINIT, CREAZEPROCESS, and

CREATEKST| were described in chapter three. The PLZ/ASH

assembly language source code listings for the Traffic Cont-

roller module is provided in Appendix B.

*Procedure TCGETWORK provides the mechanism for user

process scheduling. The input parameters to TCGETWORK are

the VP ID of the virtual processor to which a process will

be scheduled and the logical CPU number to which the virtual

processor belongs. The determination of which process to

schedule is made by a looping mechanism that finds the first

"ready" process on the ready list associated with the cur-

rent logical CPU number. Processes appear in the ready list

by order of priority. This looping mechanism is required as

both "running" and "ready" processes are maintained on the

ready list. This ready list structure was chosen to simpli-

fy the algorithm provided in procedure TCkdvance. If a

ready process is found, its state is changed to "running"

and its process ID (viz., the APT entry number) is inserted

in the running list entry associated with the current virtu-

al processor. Procedure SOAP_1DBR is then invoked in the

Inner Traffic controller to effect the actual process

switch. If a ready process was not found (viz., the ready
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list was empty or comprised solely of 'running processes"),

then the running list entry associated with the current vir-

tual processor is marked with the constant "IdleProc" and

procedure IDLE is invoked in the Inner Traffic Controller.

2. X~j~j

The primary function of TC_AAIT is the determination of

whether some user specified event has occurred. if the

event has occured, control is returned to the caller. Oth-

erwise, the process is blocked and another process is sche-

duled. The input parameters to TCAWAIT are a pointer to a

segment handle, an instance (event numberl, and a user spe-

cified eventcount value. TCAVAIT initially locks the Ac-

tive Process Table and obtains the current value of the ev-

entcount in question by calling procedure

M_READEVENTCOUNT. The determination of event occurrence

is made by comparing the user specified eventcount value

with the current eventcount. If the user value is less than

or equal to the current eventccunt, the awaited event has

occurred and control is returned to the caller. Otherwise,

the awaited event has not yet occurred and the process must

be blocked.

If the process is to be blocked, procedure RUNNING_VP is

invoked to ascertain the VP ID of the virtual processor

bound to the process. The process' ID (viz., APT entry num-

ber) is then read from the running list. The input parame-
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ters to TCAVAIT (viz., Handle, Instance, and Value) are

then stored in the Event Data portion of the process$ APT

entry. The process is removed from its associated ready

list by redirecting the appropriate linking threads (poin-

ters). Once removed from the ready list, the process is

threaded into the blocked list and its state changed to

"blocked" by invocation of the library function LISTISSEET.

Procedure TCGETWORK is then called to schedule another pro-

cess for the current virtual processor.

3.

The primary purpose of TCADVANCE is the broadcasting

of some event occurrence. This entails incrementing the ev-

entcount associated with the event, awakening all processes

that are waiting for the event, and insuring proper schedul-

ing order by generating any necessary virtual preempt inter-

rupts. The high level design algorithm for TC ADVNCE is

provided in Figure 46. The input parameters to TCADVANCE

are a pointer to a segment's handle and an instance (event

number). Initially, TCADVANCE locks the APT to prevent the

possibility of a race condition. The eventcount identified

by the input parameters is then incremented by calling

MMADVANCE. EADVAICE returns the new value of the event-

count. Once the eventcourt has been advanced, TCADV&NCE

awakens all processes awaiting this event occurrence. This

is accomplished by checking all processes that are currently
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in the blocked list. The process' HANDLE and INSTANCE en-

tries are compared with the handle and instance identifying

the current event. If they are the same, then the process

is awaiting some occurrence of the current event. In such a

case, the process' VALUE entry in the ART is compared with

the current value of the eventcount. If the process' VALUE

is less than or equal to the current eventcount value, the

awaited event has occurred and the process is removed from

the blocked list and threaded into the appropriate ready

list by the library function LIST_3NSERT.

Once the blocked list has been checked, it is necessary

'to reevaluate each ready list to insure that the highest

priority processes are running. It is relatively simple to

determine if a virtual preempt interrupt is necessary, how-

ever, it is considerably more difficult to determine which

virtual processor should receive the virtual preempt. To

assist in this evaluation, a "count" variable (number of

preempts needed) is zeroed and a preempt vector is created

on the Kernel stack with an entry for every virtual proces-

sor associated with the logical CPU being evaluated. In..-

tially, every entry in the preempt vector is marked "truen

indicating that its associated virtual processor is a candi-

date for preemption. Once the preempt vector is initial-

ized, the first 'n" processes on the ready list (where n

equals the number of VP's associated with the current logi-

cal CPU) are checked for a determination of their state. If
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TCADVANCE Procedure (HANDLE, INSTANCE)

Begin

I Get new eventcount I
COUNT :- MR-ADVANCE (HANDLE, INSTANCE)

Call WAITLOCK (APT)

I Wake up processes I
PROCESS :- BLOCKEDLISTHEAD

Do while not end of BLOCKED-LIST
If (PROCESS.HANDLE = HANDLE) and

(PROCESS.INSTANCE = INSTANCE) and
(PROCESS.COUNT <= COUNT)

then
Call LIST INSERT (READY LIST)

end if

PROCESS := PROCESS.NEXTPROCESS
end do

I Check all ready lists for preempts 1
LOGICkLCPUNO : 1

Do while LOGICLL_CPU_NO <- #NRCPU
I Initialize preempt vector I
VPID := FIRST_VP (LOGICAL_CPU NOI

Do for LOOP := I to SR_VPLOGICAL_CPU_NO
RUNNINGLIST[VPID].PREEPT := #TRUE

VPID := VPID + 1
end do

I Find preempt candidates I
CANDIDATES := 0

PROCESS := REkDYLIST_HEAD(LOGICALCPU_NO)

Figure 46: TCADVANCE Algorithm
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VPID := FIESTVP(LOGICL_CPUNO)

Do (for CYCLE = 1 to MR_¥P(LOGICALCPUVO) and
not end of READYLIST(LOGICAL CPU NO)

If PROCESS = tRUNNING
then
RUNNING_LIST[VP_ID].PREERPT : #FALSEelse
CANDIDATES := CANDIDATES + I

end if

VP ID := VPID + 1
PROCESS := PROCESS.NEXTPROCESS

end do

1 Preempt appropriate candidates I
VPID := FIRSTVP(LOGICALCPU_ O)

Do for CHECK := 1 to NRVP(LOGICALCPUNO)
If (RUNNINGLIST[VP_ID].PREEMPT = #TRUE) and

(CANDIDATES > 0)
then
Call SETPREEMPT (VP ID)

CANDIDATES := CANDIDATES - I
end if

VPID := VPID + 1
end do

LOGICAL_CPUNO : LOGICAL_CPU_NO + 1
end do

Call UNLOCK (APT)

Return

End ?CADVANCE

Figure 16: TCADVANCE Algorithm (Continued)
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a process is found to be "running'$ then it should not be

preempted as processes appear in the ready list in order of

priority. When a running process is found, its associated

entry in the preempt vector is marked "false." If a process

is encountered in the "ready" state then it should be run-

ning and the "count" variable is incremented. When the

first 'In" processes have been checked or when we reach the

end of the current ready list (whichever comes first) , the

entries in the preempt vector are "popped" from the stack.

If an entry from the preempt vector is found to be "true",

this indicates that its associated virtual processor is a

candidate for preemption since it is either bound to a lower

pr-iority process, or it is "idle." In such a case, the

"count" variable is evaluated to determine if the virtual

processor associated with the vector entry should be

preempted. if the count exceeds zero, a virtual preempt in-

terrupt is sent to the VP and the count is decremented.

Otherwise, no preempt is sent as there is no higher priority

process awaiting scheduling.

This preemption a..gorithm is completed for every ready

list in the Active Process Table. once all ready lists have

been evaluated, the APT is unlocked and control is returned

to the caller. It is noted that it is not necessary to in-

voke TC-GETWORK before exiting ADVANCE. If the current VP

requires rescheduling, it will have received a virtual

preempt interrupt from the preemption algorithm. If this
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has occurred, the VP will be rescheduled when its running

process attempts to leave the Kernel domain and the virtual

preempt interrupts are unmasked.

VIRTUALPREEMPTHANDLEE is the interrupt handler for

virtual preempt interrupts. The entry address of

VIRTUALPREEMPTHANDLER is maintained in the virtual inter-

rupt vector located in the Inner Traffic Controller. Once

invoked, the handler locks the Active Process Table and det-

ermines which virtual processor is being preempted by call-

ing RUNNINGVP. The process running on the preempted VP is

then set to the "ready" state and TCGETWORK is invoked to

reschedule the virtual processor. When TC GETWORK returns

to VIRTUALPREEMPTHANDLER, the APT is unlocked and a virtu-

al interrupt return is executed. This return is simply a

jump to the point in the hardware preempt handler where the

virtual interrupts are unmasked. This effects a virtual in-

terrupt return instruction.

5. p2j&L~ EK4gjagj

The remaining two procedures in the Traffic Controller

module represent the extended instructions: PROCESSCLASS

and GETDBRNUBER. Both procedures lock the Active Process

Table and call RUNNING_VP to determine which virtual proces-

sor is executing the current process. The process ID (viz.,
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APT entry Number) is then extracted from the running list.

PROCESS-CLASS reads and returns the current process@ securi-

ty access classification from the APT. GETDBRNUBBEB reads

and returns the current process$ DBR handle. It should be

noted that in general the DBB number provided by procedure

GET-DBRNUMBER is only valid while the APT is locked. Par-

micularly, in the current SASS implementation, the Segment

Manager invokes GETDBRMUMBER and then passes the obtained

DBR number to the Distributed Memory manager for utilization

at that level. In a more general situation, the process as-

sociated vith the DBR number may have been unloaded before

the DBR number was utilized, thus making it invalid. This

problem does not arise in SASS as all processes remain load-

ed for the life of the system.

C. .02s1112Jl XIIHH HA A n.kgL

The Distributed Memory Manager module provides an inter-

face between the Segment Manager and the Memory Manager pro-

cess, manipulates event data in the Global Active Segment

Table (G.AST), and dynamically allocates available memory.

A detailed description of the Distributed memory Manager in-

terface to the Memory Manager process was presented by Wells

(201. The remaining extended instruction set is discussed

in detail below. The complete PLZ/ASH source listings for

the Distributed Memory Manager module is provided in Appen-

dix C.

- 234 -



88_READEVENTCOUNT is invoked by the Event Manager and

the Traffic Controller to obtain the current value of the

eventcount associated with a particular event. The input

parameters to this procedure are a segment handle pointer

and an instance (event Number), which together uniquely

identify a particular event.

The G_AST is locked and the entry offset of the segment

into the G-AST is obtained from the segment's handle. The

instance parameter is then validated to determine which ev-

entcount is to be read. If an invalid instance is speci-

fied, control is returned to the caller specifying an error

condition. Otherwise, the current value of the specified

eventcount is read. The GAST is then unlocked, and the

current eventcount value is ret'nrned to the caller.

2. _4ffk_4j~g

MMADV&NCE is invoked by the Traffic Controller to re-

flect the occurrence of some event. The input parameters to

MMLDVANCE are a pointer to a segment's handle and a parti-

cular instance (event number).

The Global Active Segment Table is locked to prevent a

race condition, and the offset of the segment's entry into

the GAST is obtained from the segment handle. The instance

parameter is then validated to determine which eventcount is

to be advanced. If an invalid instance is specified, an er-
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ror condition is returned to the caller and no data entries

are affected. If the instance value is valid, the appropri-

ate eventcount is incremented, and its new value is re-

turned.

3. IL.Zigktlj

33-TICKET is invoked by the Event Manager to obtain the

current value of the sequencer associated with a specified

segment. rhe input parameter to MRTICKET is a pointer to a

segment's handle.

Initially, 88_TICKET locks the Global Active Segment Ta-

ble to prevent a race condition. Next the offset of the

segment's entry into the GAST is obtained from the segment

handle. The current value of the sequencer for the speci-

fied segment is then read and saved as a retarn parameter to

the caller. The sequencer value is then incremented in an-

ticipation of the next ticket request. once this is com-

plete, the G_&ST is unlocked and control is returned to the

caller.

The MMLLOC&TE procedure provided in this implementa-

tion is a stub of the MR_&LLOCATE described in the Memory

Manager design of Eaore and Gary [5]. The primary function

of MHALLOCATE is the dynamic allocation of fixed size

blocks of ivailable memory space. It is invoked in the cur-
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rent implementation by the initialization routines in

BOOTSTRAP_LO&DER and TC_INIT for the allocation of memory

space used in the creation of the Kernel domain and Supervi-

sor domain stack segments and the creation of the Known Seg-

ment Tables for user processes. Dynamic reallocation of

previously used memory space (viz., garbage collection) is

not provided by the BMHELLOCATE stub in this implementation.

hll memory allocation required in this implementation is for

segments supporting system processes that remain active, and

thus allocated, for the entire life of the system. Memory

is allocated in blocks of 256 (decimal) bytes of processor

local memory (on-board RAM). In this stub allocatable memo-

ry is declared at compile time by a data stzucture

(MEHPOOL) that is accessible only by MRALLOCATE.

The input parameter to HHALLOCATE is the number of

blocks of requested memory. This parameter is converted

from a bl3ck size to the actual number cf bytes requested.

This computation is made simple since memory is allocated -n

oovers of two. The byte size is obtained by logically

shifting left the input parameter eight times, where eight

is the power of two desired (viz., 256). once the size of

the requested memory is computed, it is necessary to deter-

mine the starting address of the memory block(s) to be allo-

cated. ro assist in this computation, a variable

(NEXT_BLOCK) is used to keep track of the next available

block of memory in MEN-POOL. NEXT_BLOCK, which is initial-

t
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ized as zero, provides the offset into the memory being al-

located. Once the starting address is obtained, the physi-

cal size of the memory allocated is added to VEXT_BLOCK so

that the next request for memory allocation will begin at

the next free byte of memory in HENPOOL. This new value of

3EXTBLOCK is saved and the starting address of the memory

for this request is returned to the caller.

D. RZY9 91U~ILOUE

The SASS Gate Keeper provides the logical boundary bet-

ween the Supervisor and the Kernel and isolates the Kernel

from the system users, thus making it tamperproof. This is

accomplished by means of the hardware system/normal mode and

the software ring-crossing mechanism provided by the Gate

Keeper. The Gate Keeper is comprised of two separate mo-

dules: 1) the USERGATE module, and 2) the

KERNEL_GATEKEEPER module. These modules are disjoint, with

the USER-GATE module residing in the Supervisor domain and

the KERNELGATEKEEPER module residing in the Kernel domain.

It is important to note that the USER_3AT is a separately

linked component in the Supervisor domain ard is not linked

to the Kerael. The only thing in common between these two

modules is a set of constants identifying the valid extended

instruction set which the Kernel provides to the users.

The Gate Keeper modules presented in this implementation

are only stubs as they do not provile all of the functions
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required of the Gate Keeper. Hlowever, the only task not

provided in this implementation is the validation of parame-

tars passed from the Supervisor to the Kernel. a detailed

description of this parameter validation design is provided

by Coleman E21. In the process management demonstration,

the Supervisor stubs are written in PUZ/ASA with all parame-

ters passed by CPU registers. A detailed description of the

Gate Keeper modules and the nature of their interfaces is

presented below. The PLZ/ASM source listings for the two

Gate Keeper nodules are provided in Appendix D.

The USER_.GATE module provides the interface structure

between the user processes in the Supervisor domain and the

Kernel. The USER-GATE is comprised of ten procedures (viz.,

entry points) that correlate on a one to one basis with the

ten "user visible" extended instructions (listed in Figure

10) provided by the Kernel. The only action performed by

each of these procedures is the execution of the "system

call" instruction (SC) with a constant value, identifying

the particular extended instruction invoked, as the source

operand.

The SC instruction is a system trap that forces the

hardware into the system mode (Kernel domain) and loads re-

gister 15 with the system stack pointer (Kernel domain

stack). The current instruction counter value (IC) is
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pushed onto the Kernel stack along with the current CPU flag

control word (FCW). In addition, the system trap instruc-

tion is pushed onto the Kernel stack with the upper byte

representing the SC instruction and the lower byte repre-

senting the SC instruction's source operand (viz., the Ker-

nel extended instruction code). Together, these operations

form an interrupt return (IRET) frame as illustrated in Fig-

ure 44. Once this is complete, the FCi is loaded with the

FCi value found in the System Call frame of the Program Sta-
tus Area (viz., the hardware "interrupt vector"). The

structure of the Program Status Area is illustrated in Fig-

ure 47. The instruction counter is then loaded with the ad-

dress of the SC instruction trap handler. This value is

also located in the SC frame of the Program Status Area.
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I Interrupt
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I Address I Vectored
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* NOTE: Offsets represent Frogras Status Area structure
for non-segmented Z8002 microprocessor.

Figure 47: Program Status Area
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The system trap handler for the System Call instruction

is the KERNEL_GATEZ_KEPER. The address of the

KERNBLATEB_KEEPER and the Kernel FCW value are placed in

the System Call frame of the Program Status Area by the

BOOTSTRP_LOADEB module during initialization. The

KERNELGATZKEEPER fetches the extended instruction code

from the trap instruction entry in the IRET frame on the

Kernel staak. This value is then decoded by a "case* state-

ment to determine which extended instruction is to be exe-

cuted. If the extended instruction code is valid, the ap-

propriate Kernel procedure is invoked. Otherwise, an error

condition is set and no Kernel procedures are not invoked.

Once control returns to the KERNEBL_GATEKBEPER, the CPU re-

gisters and normal stack pointer (NSP) value are pushed onto

the Kernel stack in preparation for return to the Supervisor

domain. It is noted that this operation would normally oc-

cur immediately upon entry into the KERNELGATE_KZEPER. In

this implementation, however, parameter validation is not

accomplished and the CPU registers are used to pass parame-

ters to and from the Kernel only for use by the process man-

agement demonstration. In an actual SASS environment, all

parameters would be passed in a separate argument list and

the CPU registers would appear exactly the same upon leaving

the Kernel as they did upon entering the Kernel. This is
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important to insure that no data or information is leaked

from the Kernel by means of the CPU registers.

Control is returned to the Supervisor by means of the

return mechanism in the hardvare preempt handler. This me-

i chanism is utilized to preclude the necessity of building a

separate mechanism for the KERNELGATE_KEEPER that would ac-

tually perform the very same function. To accomplish this,

the KERNEL-GATE-KEEPER executes an unconditional jump to the

PREEMPTBET label in PHYSPREEMPTHANDLER. This "Jump" to

the hardvare preempt handler represents a "virtual IRET" in-

struction providing the same function as the virtual inter-

rupt return described in the discussion of the virtual

preempt handler. At this point, the virtual preempt inter-

rupts are unmasked, the normal stack pointer and CPU regis-

ters are restored from the stack, and control is returned to

the Supervisor by execution of the IRET instruction.

E. "fl

The implementation of process management functions for

the SASS has been presented in this chapter. The implemen-

tation was discussed in terms of the Event Manager, Traffic

Controller, Distributed Memory Manager, and Gate Keeper mo-

dules.
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Chapter XXIII

COICLUSI 03

The implementation of process management for the securi-

ty Kernel of a secure archival storage system has been pre-

sented. The process management functions presented provide

a logical and efficient means of process creation, control,

and scheduling. In addition, a simple but effective mechan-

ism for inter-process communication, based on the eventcount

and sequencer primitives, was created. Work was also coo-

pleted in the area of Kernel database initialization and a

Gate Keeper stub to allow for dual domain operation.

The design for this implementation was based on the Zi-

loq Z8001 sixteen bit segmented microprocessor [22] used in

conjunction with the Zilog Z8010 Memory Management Unit

[231. The actual implementation of process management for

the SASS was conducted on the Advanced Micro Computers

Am96/4116 MonoBoard Computer [1) featuring the AmZ8002 six-

teen bit non-segmented microprocessor. Segmentation hard-

ware was simulated by a software Memory Management Unit Ia-

age.

This implementatlon was effected specifically to support

the Secure Archival Storage System (SASS) (17]. However,

the implementation is based on a family of Operating Systems
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171 designed with a primary goal of providing multilevel in-

formation security. The loop free nodular design utilized

in this implementation easily facilitates any required ex-

pansion or modification for other family members. in addi-

tion, this implementation fully supports a multiprocessor

design. While the process management implementation appears

to perform correctly, it has not been subjected to a formal

test plan. Such a test plan should be developed and imple-

mented before kernel verification is begun.

A. ZOQLLQ! 21 WORK

There are several possible areas in the SASS design that

would be immediately suitable for continued research. In

the area of hardware, this includes, the establishment of a

multiprocessor environment, hardware initialization, and in-

terfacing to the host computers and secondary storage.

Further work in the Kernel includes the actual implementa-

tion of the memory manager process, and the refinement or

the Gate Keeper and Kernel int~ializatioa structures. The

implementation of the Supervisor has not been addressed to

date. Its areas of research include the implementation of

the File Manager and Input/Output processes, and the final

design and implementation of the SASS-Hosts irotocols.

other areas that could also prove interesting in rela-

tion to the SASS include the implementation of dynamic memo-

ry management, the support of multilevel hosts, dynamic pro-( -245-
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Cess creation and deletion, and the provision of

constructive vork to be performed by the Idle process.
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Appendix A

EVENT iANAGER LISTINGS

Z8000AS I 2.02

LOC OBJ CODE STNT SOURCE STATEMENT

SLISTON STTY

EVENTMGR MODULE

CONSTANT
TRUE := 1

*1 FALSE "= 0
READACCESS := 1
WRITE ACCESS : 0
SUCCEEDED := 2
SEGMENTNOT KNOVN := 28
ACCESSCLASSNOT_EQ := 33
kCCESS_CLASSNOTGE :4= 41
KSTSEGW :N= 2
NR OFKSEGS := 10
MkXNOKSTENTRIES := 54
NOT-KNOWN "= %FF

TYPE
HARBAY ARRATE3 WORD]

KSTBEC RECORD
[MNHANDLE HARRAY

SIZE WORD
ACCESSNODE BYTE
IN_CORE BYTE
CLASS LONG
MS3GNO SHORT_INTEGER
ENTRY)IUMBER SHORTINTEGER]

EXTERNAL
MMTICKET PROCEDURE
MMREADEVENTCOUNT PROCEDURE
TCkD'fANCE PROCEDURE
TCAWAIT PROCEDURE
PROCZSSCLASS PROCEDURE
CLASS_3Q PROCEDURE
CLASSGE PROCEDURE
ITCGETSEGPTR PROCEDURE
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I NTE8AL

$SECTION EB_KSTDCL
I NOTE: fIIIS SECTION IS AN 08OVEBLAY"

OR *FRANE" USED TO DEFINE TE
FORMAT OF THE KST. NO STORAGE IS
ASSIGNED BUT RATHER THE KST IS
STORED IN A SEPARATELY OBTAINED
AREA. (A SEGMENT SET ASIDE FOR IT)I

SASS 0
0000 KST ARRAT(EA Z,.OKSTENTRIES KSTREC]

'I
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GLOBAL
$SECTION EN GLB_PROC

0000 READ PROCEDUREi !~ ,,** e **mit*******,,,*******

i * READS SPECIFIED EVENTCOUNT *
* AND RETURNS ITIS VALUE TO *
* THE CALLER *S* ** ** ** ***** **** ***** *** *

* PARAMETERS: *
* Rl: SEGMENT 0 *
* R2: INSTANCE *

i**** ***********************

* RETURNS: *
* RO: SUCCESS CODE *
* RRI: EVENTCOUNT *
•****************************** !

ENTRY
I SAVE INSTANCE I

0000 93F2 PUSH IR15, R2

I "READ" ACCESS REQUIRED I
0002 2102 LD R2, #READACCESS
3004 0001

I GET SEG HANDLE & VERIFY ACCESS I
0006 5100 CALL CONVERTANDVERIFY !RI:SEG #
0008 0000'

R2:REQ. ACCESS
RETURNS:
RO:SUCCESS CODE
RI:HANDLE PTRI

O00A OBO0 CP RO, #SUCCEEDED
OOC 0002

IF EQ I ACCESS PERBITTEDI
0003 EOE THEN tREAD EVENTCOUNTI
0010 001Ce

IRESTORE INSTANCEI
0012 9712 POP R2, &215
0014 5100 CALL MKREADEVENTCOUNT 1R1:HPTR
0016 1000*

R2: INSTANCE
RETURNS:
R0:SUCCESS CODE
Ri4: EVENTCOUNTI

0018 5308 ELSE IRESTORE SPI
001A O01E'
001C 97F2 POP R2, OR15

FI
O013 9e08 BET
0020 END READ
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0020 TICKET PROCEDURE

* RETURNS CURRENT VALUE OF
* TICKET TO CALLER AND INCRE- *
B MENTS SEQUENCER FOR NEXT *

* TICKET OPERATION

* PARAMETERS:
• , l: SEGMENT *

* RETURNS: *

• RO: SUCCESS CODE *

• RR: TICKET VALUE *

ENTRY
I GET SEG HANDLE & VERIFY ACCESS I
I "WRITE" ACCESS REQUIRED 1

0020 2102 LD R2, #WRITEACCESS
0022 0000
0024 5F00 CALL CONVERTAND_VERIPY IR1:SEG 0
0026 0000'

R2:ACCESS REQ
RETURNS:
RO:SUCCESS CODE
R1:HANDLE PTRI

0028 OBO0 CP RO, ISUCCEEDED
002A 0002

IF EQ 1 ACCESS PERMITTED!
002C 5EOE THEN I GET TICKET !
0021 0038'
0030 SF0 CALL 15- TICKET IRI:HANDLE PTR
0032 0000*

RETURNS:
RR4: TICKET!

I RSTORE SUCCESS CODE 1
0034 2100 LD HO, #SUCCEEDED
0036 0002

pi
0038 9108 BET
003A END TICKET
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003A AWAIT PROCEDURE

* CURRENT EVEITCOUNT VALUE IS 0
* COMPARED TO USER SPECIFIED *
* VALUE. IF USER VALUE IS •
* OGREATER THAN CURRENT EVENT- •
*COUNT VALUE THEY PROCESS IS•
* "BLOCKED" UNTIL THE DESIRED *

* EVENT OCCURS. •

* PARAMETERS:

* RI: SEGMENT # *
* R2: INSTANCE (EVENT #) *
* RR4: SPECIFIED VALUE *

* RETURNS: *
* RO: SUCCESS CODE *

ENTRY
I SAVE DESIRED EVENTCOUNT VALUE I

003A 91?4 PUSHL &R15, RR
I SAVE INSTANCE I

003C 9312 PUSH SR15, R2
I "READ" ACCESS REQUIRED !

003E 2102 LD R2, #READACCESS
0040 0001

I GET SEG HANDLE & VERIFY ACCESS 1
0042 5F00 CALL CONVERTANDVERIFY I21:SEG #
00441 0000'

R2:ACCESS REQ
RETURNSS:
20:SUCCESS CODE
R1:HANDLE PTR!

00416 0BO0 CP RO, #SUCCEEDED
00418 0002

IF EQ I ACCESS PERMITTED I
004A 59OE THEN I AWAIT EVENT OCCURRENCE I
O04C 005A I

I RESTORE INSTANCE I
004E 97P2 POP R2, 3I15

I RESTORE SPECIFIED VALUE I
0050 95P41 POPL RR4, 4915
0052 5FO0 CALL TCAWAIT IRI:IANDLE PTR
0054 00000

R2: INSTANCE
R1R3 :VALUE
RETURNS:
R0:SUCCESS CODE!
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0056 5308 ELSE IRESTOBE STICKI
0058 0053'
005A 95F4 POPL RB'&, OIiS
005C 97F2 POP R2, 1115

0053 9308 BET
0060 END IWAIT
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0060 ADVANCE PROCEDURE
: ****************e, ss8 ,s~,8,e**

* SIGNALS THE OCCURRENCE Of *

* SOME EVENT. EVENTCOUNT IS 0
* INCRENENTED AND THE TRAFFIC *
* CONTROLLER 1 INVOKED TO
* AWAKEN ANY PROCESS AVAITING *

* THE OCCURRENCE.I ** ************~***,**********¢
* PARAMETERS:
* Ri: SEGMENT # *

R R2: INSTANCE (EVENT #)

* RETURNS:
* RO: SUCCESS CODE *
•*************************Weee !

ENTRY
I SAVE INSTANCE 1

0060 93F2 PUSH 1R15, R2

I GET SEG HANDLE & VERIFY ACCESS I
J "VRITE" ACCESS REQUIRED I

0062 2102 LD R2, #WRITEACCESS
0064 0000
0066 5FO0 CALL CONVERTANDVERIFY IRI:SEG #
0068 0000'

2: ACCESS REQ
RETURNS:
RO:SUCCESS CODE
R1:HANDLE PTRI

006A OBO0 CP RO, #SUCCEEDED
006C 0002

IF EQ I ACCESS PERMITTED I
006E 5EOE THEN I ADVANCED EVENTCOUNT 1
0070 007C'

! RESTORE INSTANCE I

0072 97F2 POP R2, 1R15

0074 5F00 CALL TCADVANCE IR1:HANDLE PTR
0076 0000*

R 2: INSTANCE
RETURNS:
RO:SUCCESS CODEI

0078 5E08 ELSE IRESTORE STACKI
007A 007E'
007C 97F2 POP R2, 5R15

FI
007E 9E08 RET
0080 END ADVANCE
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INTERNAL
SSECTION EM INTPROC

0000 CONVERT AND VERIFY PROCEDURE

* CONVERTS SEGMENT NUMBER TO KST INDEX*
e AND EXTRACTS SEGMENT'S HANDLE FROM *
* KST. IF SUCCESSFUL, THEN ACCESS *

CLASS OF SUBJECT IS CHECKED AGAINST *
* ACCESS CLASS OF OBJECT TO INSURE
* THAT ACCESS IS PERMITTED. *

* PARAMETERS: *
* Ri: SEGMENT NUMBER *

R2: ACCESS REQUESTED

* RETURNS: *

* RO: SUCCESS CODE *
* Ri: HANDLE POINTER

~E NT RY
I SAVE REQUESTED ACCESS I

0000 93F2 PUSH ArC5, S2
SI GET SEGAENT HANDLE I

0002 5FO0 CALL GETHANDLE IRI:SEG #
i 00041 00629

RETURKS:
RO:SUCCESS CODE
R4:HANDLE PTR
R5:CLASS PTR!

0006 OBO0 CP RO, #SUCCEEDED
0008 0002

IF EQ ! SEGMENT IS KNOWN I
O00A 5ROE THEN ! VERIFY ACCESS I
O00C 005E'

I SAVE HANDLE & CLASS PTR !
O00 91F4 PUSHL aR15, RR4

1 GET SUBJECT S SAC I
0010 5F0 CALL PROCESSCLASS IRETURNS:
0012 0000*

RR2:PROC CLASS!
I RETRIEVE SEG CLASS POINTER I

0014 95F0 POPL RRO, aR15
I GET SEGMENT'S CLASS I

0016 1414 LDL RR4, dRi
I RETRIEVE REQUESTED ACCESS I

0018 97F1 POP R1, §R15
I SAVE HANDLE POINTER I

001A 93F0 PUSH &R15, RO
I CHECK ACCESS CLEARANCE I

001C 0B31 CP R1, #WRITEACCESS
O01E 0000

IF EQ I WRITE ACCESS REQUESTED I
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0020 520B THEN
0022 0040f
0024 SPO0 CALL CLASSEQ IRR2:PROCESS CLASS
0026 0000*

RR4:SEGMENT CLASS
RETURNS:
RI: CONDITION CODE!

0028 0501 CP RI, #FALSE
002A 0000

IF EQ 1 ACCESS NOT PERNITTED!
002C 530E THEN
O02E 0038'
0030 2100 LD RO, #kCCESSCLASSNOTEQ
0032 0021
0034 5308 ELSE !ACCESS PERMITTED!
0036 003C'
0038 2100 LD RO, #SUCCEEDED
003A 0002

FT
003C 5108 ELSE I READ ACCESS REQUESTED I
003E 0058'
0040 5700 CALL CLASSGE ERR2:PROCESS CLASSi 0042 0000*
04 

RR4:SEGMENT CLASS
RETURNS:
RI:CONDITION CODE!

0044 OB01 CP R1, #FALSE
0046 0000

IF EQ IACCESS NOT PERMITTED!
0048 5OE THEN
004A 0054'
004C 2100 LD RO, #ACCESSCLASSNOTGE
0042 0029
0050 5E08 ELSE 1ACCESS PERMITTEDI
0052 0058'
0054 2100 LD RO, #SUCCEEDED
0056 0002

FI
F'

I RETRIEVE HANDLE POINTER I
0058 91F1 POP Ri, OR15
O05A 5308 ELSE
005C 0060'

0 RESTORE STACK I
005E 9772 POP R2, OR15

FI
0060 9108 RET
0062 END COMERTN D_VERIFY
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0062 GET_H NDLE PROCEDURE

* CONVERTS SEGMENT NUMBER TO *
* KST INDEX AND DETERMINES IF
* SEGMENT IS KNOWN. IF KNOWN *
* POINTER TO SEGMENT HANDLE
* IND POINTER TO SEGMENT CLASS*
* ARE RETURNED.

* PARAMETERS: *
* R1: SEGMENT NUMBER *

* RETURNS:

* RO: SUCCESS CODE *

* R4: HANDLE POINTER *
* * R5: CLASS POINTER *

ENTRY
I CONVERT SEGMENT # TO KST INDEX # I

0062 0301 SUB R1, #NR_OF_KSEGS
0064 000A

! VERIFY KST INDEX I
0066 2100 LD RO, #SUCCEEDED
0068 0002
006A 0801 CP Ri, #0
006C 0000

IF LE IINDEX NEGATIVE!
006E 5EOA THEN
0070 007&'
0072 2100 LD RO, #SEGMENTNOTKNOWN
0074 001C
0076 5E08 ELSE LINDEX POSITIVE!
0078 0086'
007A 0801 CP Ri, #IAXNO_KSTEMTRIES
007C 0036

IF GT 1 EXCEEDS MAXIMUM INDEX!
007E 5E02 THEN IINVALID INDEX!
0080 0086'
0082 2100 LD RO, #SEGENTMOT_KNOWN
0081 OD1C

.4 Fl
F'

0086 OBO0 CP RO, #SUCCEEDED
0088 0002

IF EQ !INDEX VALID!

008A 5EOE THEN
008C OOBE

I SAVE KST INDEX I
008E 93F1 PUSH aR15. 81

I GET KST ADDRESS I
0090 2101 LD Ri, OKSTSEGNO
0092 0002
0094 5FO0 CALL ITCGETSEGPTR IRI:KSTSEGNO
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0096 0000*
RETURNS:
RO:KST ADDRI

I RETRIEVE KST INDEX # I
0098 97F3 POP R3, 3R15

I CONVERT KST INDEX # TO KST OFFSET I
009C 1902 MLT RR2, #SIZEOF KSTREC
009 0 COMPOTE KST ENTRY ADDRESS I
009E 8103 ADD R3, RO

I SEE IF SEGBENT IS KNOWN I
OOAO 4D31 CP KST.NSEG_NO(R3), #NOTKNOWN
ook2 000E

* 0OA4 OOFF
IF EQ ISEGRENT NOT KNOWN!

00A6 5EOE THEN
0OA8 00B2'
OOAA 2100 LD RO, #SEGMENTNOT_KNOWN
OOAC 001C
OOAE 5308 ELSE ISEGRENT KNOWN!
OOBO OOBE e

0032 2100 LD RO, #SUCCEEDED
0OB4 0002

I GET HANDLE POINTER !
0036 7634 LDA R4, KST.LIIIJHANDLE(R3)
00B8 0000

I GET CLASS POINTER I
OOBA 7635 LDA R5, KST. CLASS(R3)
OOBC O00A

FI
F'

OBE 9E08 RET
OOCO END GET_HKNDLE

END EVENTJMGR
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Appendix B

TRAFFIC CONTROLLER LISTINGS

Z80OOS% 2.02
LOC OBJ CODE STNT SOURCE STATEMENT

SLISTON STTY
TC MODULE
CONSTANT

I ******** SYSTEM PARAMETERS ***,,,** !
NRPROC 3= 4
VP-NR : 2
NRCPU 2
NRKST := 51

I ******** SYSTEM CONSTANTS *,****** !

RUNNING : 0
READY : 1
BLOCKED 2
IDLE PROC : IDDDD
NIL := %FFFF
INVALID 3= IEEE
KERNEL-STACK := I
USER STACK 3 3
KSTSEG := 2
KSTLIMIT := 1
USERFCW X- 1800
WRITE 0
IINDICATES LOWEST SYSTEM
SECURITY CLASS!
SYSTEMLOW := 0
STKOFFSET := %FF
REMOVED :% %ABCD
TRUE = 1
FALSE :: 0
SUCCEEDED := 2

TYPE
APPTR WORD
VPPTR WORD
ADDRESS WORD
8_ARRAY ARRA7[3 WORD]
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APTABLE RECORD
(NEXTAP AP PTR
DBR WORD
SAC LONG
PSI INTEGER
STATE INTEGER
AFFINITY WORD
VPID VPPTR
HANDLE HARRAY
INSTANCE WORD
VALUE LONG
FILL_2 ARRAY[2 WORD])

RUN_ARRAY ARRAY[VPNR APPTR]
RDYARRAY ARRAY[NRCPU AP_PTR]
&P_DATA ARRAY[NRPROC APTABLE]
IP_DATk RECORD

[(R_VP ARRAY[NRCPU WORD]
FIRST ARRAY[NR_CPU VPPTR]

KS7_REC RECORD
(.d_HANDLE HARRAY

SIZE WORD
ACCESS BYTE
INCORE BYTE
CLASS LONG
MSEGNO SHORT_INTEGER
ENTRYENUM SHORTINTEGER

EXTERNAL
KLOCK PROCEDURE
KUNLOCK PROCEDURE
SETPREEMPT PROCEDURE
SWAPVDBR PROCEDURE
IDLE PROCEDURE
RUNNING_VP PROCEDURE
CREATE_INTVEC PROCEDURE
LISTINSERT PROCEDURE
ALLOCATENMU PROCEDURE
55N LLOCATE PROCEDURE
UPDATENMUIlAGE PROCEDURE
CREATESTACK PROCEDURE
MR-ADVANCE PROCEDURE
MEREADEVENTCOUNT PROCEDURE
GASTJLOCK WORD
PREIMPTRET LABEL
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SSECTION TCDATA
$IT ERN &L

0000 APT RECORD
(LOCK WORD
RUVNINGLIST RUN-ARRAY
READYLIST RDYARRAY
BLOCKEDLIST APPTR

FILL- 3 LONG
VP VP_DATA
FILL ARRAYI4 WORD]

AP APDATA

ITHESE VARIABLES ARE USED DURING TC

INITIALIZATION TO SPECIFY AVAILABLE
ENTRIES IN THE APT, AND ARE INITIAL-
IZED BY TC_INIT IN THIS INPLEMENTATION!

00A0 NEXTVP WORD
0OA2 APT_3NTRY WORD

SSECTION TCLOCAL
SABS 0
INOTE: USED AS OVERLAY ONLYI

0000 ARGLIST RECORD
(REG ARRAY[ 13 WORD]
IC WORD
CPUI D WORD
SAC1 LONG
PRI1 WORD
USRSTK WORD
KER_STK WORD
KST1 LONG

SABS 0
INOTE: USED AS STACK FRAME FOR
STORAGE OF TEMPORARY VARIABLES
FOR CREATEPROCESS.

0000 CREATE RECORD
(ARGPTR WORD
DBR_JUM WORD
LIMITS WORD
SEGADDR ADDRESS
NSP WORD

SABS 0
0000 HANDLEVAL RECORD

[HIGH LONG
LOU WORD

ITHE FOLLOWING DECLARATION IS UTILIZED

AS A STACK FRAME FOR STORAGE OF
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TEMPORARY VARIABLES UTILIZED Bl
TCADVANCE AND TCAWLIT. !

$ABS 0
0000 TEMP RECORD

(HANDLE_PTR WORD
EVENTR WORD
EVENTVAL LONG
ID VP WORD
CPU mUl WORD
HANDLE HIGH LONG
HANDLE-LOW WORD

$SECTION TCKSTDCL
INOTE: KST DECLARATION IS USED HERE
TO SUPPORT KST INITIALIZATION FOR
THIS DEMONSTRATION ONLr. THIS
DECLARATION AND INITIALIZATION
SHOULD EXIST AT THE SEGMENT MANAGER
LEVEL AND THUS SHOULD BE REMOVED
UPON IMPLEMENTATION OF SYSTEM
INITIALIZATION. 1

$&as 0
0000 KST ERAY[NR_KST KSTREC]
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$SECTION TCINTPROC
0000 TCGETWORK PROCEDURE

* PROVIDES GENERAL NANAGE- 0
* RENT OF USER PROCESSES BY *
0 EFFECTING PROCESS SCREDU- *
* LING ON VIRTUAL PROCESSORS*
****•*** *********************

* PARABETERS: *
* RI: CURRENT VP ID *

R 13: LOGICAL CPU # •

* LOCAL VARIABLES: •
* R2: NEXT READY PROCESS *
• R1: AP PTR •

ENTRY
I FIND FIRST READY PROCESS I

0000 6132 LD 22, APT.READY_LIST(R3)
0002 0006'

GETREAD!_AP:
DO IWHILE NOT (END OF LIST OR READY)!

0004 0B02 CP R2, #NIL
0006 FFF1
0008 5EOE IF EQ 1EO READY PROCESS! THEN
O00k 0010'
O00C 5308 EXIT FRON GETREAD_AP
0001 0026'

FI
0010 4D21 CP APT. AP.STATE(R2) , #READY
0012 002A'
0014 0001
0016 5OE IF EQ IPROCESS READYM THEN
0018 0013'
0011 5E08 EXIT FROM GETREADY_AP
O01C 0026'

Fi
I GET VZXT AP FROM LIST I

001E 6124 LD R4, APT.AP.NEKT AP(R2)
0020 0020'
0022 A142 LD R2, R4
0024 E8EF OD
0026 0802 CP R2,#NIL
0028 FFFF
002A 5OE IF EQ I IF NO PROCESSES READY I THEN
002C 003C'

I LOAD IDLE PROCESS I
0023 4015 LD APT.RUNNINGLIST(R), #IDLEPROC
0030 0002'
0032 DDDD
0034 5FO0 CALL :DLE
0036 0000*
0038 5E08 ELSE
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003A 00521
I LOAD FIRST READY AP I

003C 6F12 LD APT.RUININGLIST(RI), R2
0032 00021
0040 4D25 LD APT.AP.STATE(R2), #RUNNING
0042 00211
0044 0000
0046 6F21 LD PT.&PT.VP_ID(R2), R1

0048 002EI
0046 6121 LD RI, APT.AP.DBR(R2)
004C 00228
004E 5F0 CALL SAP_VDBER !(Rli:DBR)i
0050 0000*

0052 9308 RET

0054 ED TCGETVORK
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0054 VIRTUALPREEAPTJANDLER PROCEDURE
! 6e66e*,*6*eee6e***66**66*6*6

* LOADS FIRST READY AP 6
* IN RESPONSE TO PREEMPT *

* INTERRUPT *
****66e******e6e6,6e***6*** !

ENTRY
1** CALL WAIT LOCK (APT-a.LOCK) 0*1
1** RETURNS UHEN PROCESS HAS LOCKED APT **I

0054 7604 LDA R4, APT.LOCK
0056 0000'
0058 5FO0 CALL KLOCK
005A 00006

I GET RUNNING_¥P ID I
005C 5FO0 CALL RUNNINGVP !RETURNS:
005E 0000

RI: VPID
R3:CPU #1

I GET AP !
0060 6112 LD R2, APT.RUNNINGLIST(RI)
0062 0002'

I IF NOT AN IDLE PROCESS, SET IT TO READY I
0064 OB02 CP R2, #IDLE_PROC
0066 DDDD
0068 5E06 IF NE I NOT IDLE I THEN
006A 00721
006C 4D25 LD APT.AP.STATE(R2), #READr
006! 002A'
0070 0001

FI

1 LOAD FIRST READY PROCESS I
0072 5FO0 CALL TCGETWORK !Rl:VPID
0074 00001

R3:CPU #1

INOTE: THIS IS THE INITIAL POINT O
EXECUTION FOR USER PROCESSES.!
VIRTPREENPTRETURN:
1*e CALL UNLOCK (APT-,.LOCK) *01
166 RETURNS WHEN PROCESS HAS UNLOCKED APT 661
1* AND ADVANCED ON THIS EVENT **I

0076 7604 LDA R4, APT.LOCK
0078 0000'
007A 5FO0 CALL KUNLOCK
007C 00006

I PERFORM A VIRTUAL INTERRUPT RETURN I
!NOTE: THIS JUMP EFFECTS A VIRTUAL
IRET INSTRUCTION.

007! 5308 JP PREEBPTRET
0080 00006
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0082 END VIRTUAL2REIIPTHAVDLZE
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GLOBAL
SSECTION TCGLBPROC

0000 TCINIT PROCEDURE

* INITIALIZES APT HEADER *

* AND VIRTUAL INT VECTOR *

* PARAMETERS: •
* RI: CPUID •
* R2: NR.VP •

ENTRY
I NOTE, THI NEXT FOUR VALUES ARE

ONLY TO BE INITIALIZED ONCE. I

0000 4D05 LD FI.'VP, #0
0002 00A0'
0004 0000
0(o06 4D05 LD APTENTRY, #0
0008 00A2'
O00A 0000
O0OC 0D05 LD APT.BLOCKEDLIST, #NIL
O00E 000A'
0010 FFFF
0012 4D08 CLR APT.LOCK
0014 0000'

NOTE: THE FOLLOWING CODE IS INCLUDED
ONLY FOR SIMULATION OF A MULTIPROCESSOR
ENVIRONMENT. THIS IS TO INSURE THAT THE
READY LIST(S) AND VP DATA OF THE SIMULATED
CPU(S) ARE PROPERLY INITIALIZED. IN AN
ACTUAL MULTIPROCESSOR ENVIRONMENT, THIS
BLOCK OF CODE SHOULD BE REMOVED.

0016 2104 LD R4, #0
0018 0000

DO
001k OB04 CP R, #NR_CPU*2
O01C 0004

IF EQ IALL LISTS INITIALIZEDI
001E 5EOE THEN EXIT

, 0020 00261
0022 5E08
0024 0036'

?I
! INITIALIZE READYLISTS AS EMPTY 1

0026 4D45 LD APT.READYLIST(R4), #NIL
0028 0006'
002A FFFF

I INITIALLY HARK ALL LOGICAL CPU'S
AS HAVING 1 VP. THIS IS NECESSARY
TO INSURE TC_ADVANCE VILL FUNCTION
PROPERLY, AS IT EXPECTS EVERY CPU

- 266 -



TO HAVE AT LEAST 1 VP. I
002C 4D45 LD APT.VP.NR_P(R), #1
0023 0010'
0030 0001
0032 k941 INC R4, #2
0034 E8F2 OD

I END MULTIPROCESSOR SIMULATION CODE.

0036 6F12 LD APT.VP.NRVP(RI), 82
0038 0010 t
003A 6103 LD R3, NEXTVP

003C 001000032 6F13 LD APT.P.FIRST(RI), R3

0040 0014'I I RECOMPUTE VEXT_VP VALUE FOR TC
INITIALIZATION OF NEXT LOGICAL
CPU. I

0042 1125 LD R5, R2
0044 1904 BOLT RR4. #2
0046 0002
0048 8153 ADD R3, R5
004A 6F03 LD NEXTVP, R3004C OOAO'
0I INITIALIZE RUNNING LIST I
004E 6113 LD R3, APT.VP.FIRST(RI)
0050 0014 O~DO
0052 OB02 CP R2, #0
0054 0000
0056 5EOE IF EQ THEN EXIT FI
0058 005E'
005A 5E08
005C 006A'
0053 4D35 LD APT.RUUINGLIST(R3), #IDLEPROC
0060 0002'
0062 DDDD
0064 1931 INC R3, #2
0066 AB20 DEC R2, #1
0068 E8F4 OD
006k 40D15 LD kPT.READY_LIST(RI), *NIL
006C 0006'
C063 FFFF
0070 2101 LD R1, #0
0072 0000

I ENTRY ADDRESS 1
0074 7602 LDA R2, VIRTUALPREEMPTHAUDLER
0076 0054'
0078 5FO0 CALL CREATE INT_VC
007A 0000*

IR1:VIRTUAL INTERRUPT #
R2:INTERRUPT HANDLER ADDRESS!

007C 9308 RET
007E END TC_INIT
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007B CREATE_PROCESS PROCEDURE

* CREATES USER PROCESS *

* DATABASES AND APT *
* ENTRIES ,
* * * ** *mJ **,*** ***, ,* ** **,*,*

* PAR&AETERS: 
B Il4: ARGUMENT PTR *

ENTRY
INOTE: THIS PROCEDURE IS A STUB TO ALLON
PROCESS INITIALIZATION FOR THIS
DEMONSTRATION. I

I ESTABLISH STACK FRAME FOR LOCAL
VARIABLES. I

0073 030? SUB 315o #SIZEOF CREATE
0080 000A

I STORE INPUT ARGUMENT POINTER 1
0082 6FF! LD CREATE.ARG_PTR(R15), 14
0084 0000

I LOCK APT I
0086 7604 LOA R3(, APT.LOCK
0088 0000'
008A sF00 CALL KLOCK
008C 00000

I RETURNS IHEN APT IS LOCKED I
I CREATE EMU ENTRY FOR PROCESS I

008E 5F00 CALL ALLOCAT_5MU I RETURNS:
0090 0000*

RO: DBR #1
I GET NEXT AVAILABLE ENTRY 1i APT 1

0092 6101 LD R1, APTZNTRY
0094 00a20

I COMPUTE APT OFFSET !
3096 2102 LD R2, OSIZSOF APTABLE
0098 0020
009A 8112 ADD R2, 81

I SAVE NEXT AVAILABLE APT ENTRY I
009C 6F02 LD APTSNTRY, 32
0092 00A2'

I CREATE APT ENTRY FOR PROCESS I
OOAO 4015 LD APT.AP.NEXTAP(1), #NIL
00A2 0020'
OOk4 FTPP

00A6 6W10 LD APT. AP.DBR(Rl), RO
00A8 0022'

I GET PROCESS CLASS I
OOAA 541E2 LDL RR2, ARG_LXST.SACI(8141
OGAC 001E
OOAE 5D12 LDL APT. &P. SAC (R1) , R2
0080 00241

I GET PROCESS PRIORITY I
0OB2 6132 LD R2, ARG_LIST.PRIII4)
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00B4 0022
00B6 6F12 LD APT. AP. PRI(R1), R2
00B8 0028'

I GET LOGICAL CPU 0 1
OOBA 61E2 LD R2, ARG_LIST.CPU_ID(RI4)
OOBC O01C
OOBE 6F12 LD APT.AP.AFFINITY(R1), R2
00C0 002C'

ITHREAD IN LIST AND BAKE READY!
00C2 7623 LDA R3, APT.READYLIST(R2)
OOC4 0006'
00C6 7604 LDA R4, APT.AP.NEXT_AP
00C8 0020'
OOCA 7605 LDA R5, APT.AP.PRI
OOCC 00284
OOCE 7606 LDA R6, APT.AP.STATE
OODO 002Al
OOD2 2107 LD R7, #READY
00D4 0001
OOD6 AD21 EX R1, R2

! SAVE DBR # I
OOD8 6FO LD CREATE.DBRJUM(R15), RO
OODA 0002
OODC 5F0 CALL LISTINSERT
OODE 0000*

1R2: OBJ ID
R3: LIST HEAD PTR
R4: NEXT OBJ PTR
R5: PRIORITY PTR
R6: STATE PTR
R7: STATE!

I UNLOCK APT !
0090 7604 LDA R4, APT.LOCK
OO2 0000'
OOE4 510 CALL KUNLOCK
00E6 0000*

ICREATE USER STACK!
I RESTORE ARGUMENT POINTER I

OOE8 611E LD R14, CREATE.ARGPTR(R15)
009k 0000
OOC 61E3 LD R3, ARGLIST.USRSTK(R4)
OOE 0024

I SAVE LIMITS I
* OOFO 6FF3 LD CREATE. LIMITS(R15), 93

O012 0004
OOF4 5FO0 CALL MMALLOCATE IR3: # OF BLOCKS
OO6 00009

RETURNS:
R2: START ADDRI

ICOAPUTE & SAVE NSPI
OO8 A128 LD R8, R2

I ESTABLISH INITIAL SP VALUE
FOR USER STACK. I

OOFA 0108 ADD R8, #STKOFFSET
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OOFC OOFF
OOFE 6FF8 LD CREATE. NS_P(R15), R8
0100 0008

I RESTORE LIMITS 1
0102 61F4 LD R, CREATE.LIITS(R15)
0104 0004
0106 AB40 DEC R4 ISEG LIMITS1

I RESTORE DBR I
0108 61F0 LD RO, CREATE. DBRNYU(R15)
010A 0002
010C 2101 LD R1, #USERSTACK
010E 0003
0110 2103 LD R3, #WRITE IATTEIBUTE!
0112 0000
0114 5FO0 CALL UPDATE BBU_IMAGE
0116 00000

RO: DBR #
3l: SEGMENT #
R2: SEG ADDRESS
R3: SEG ATTRIBUTES
R4: SIG LIMITS!

ICREATE KERNEL STACKI
! RESTORE ARGUMENT POINTER !

0118 617E LD R14, CREATE.ARG_PTR(R15)
011A 0000
011C 61Z3 LD R3, ARGLIST.KERSTK(Rl4
011E 0026
0120 50 CALL Rd-ALLOCATE !R3: # OF BLOCKS
0122 00000

RETURNS
R2: START ADDR!

ISAKE HMU ENTRYI

I RESTORE DBER # I
0124 6170 LD 30, CREATE.DBRNUM(R15)
0126 0002
0128 2101 LD Rl, #KERNELSTACK
012A 0001
012C A134 LD R4, R3
0121 AB4O DEC 31
0130 2103 LD R3, #VRITE
0132 0000

1 SAVE START ADDRESS I
013 6FF2 LD CREATE. SEGADDR(R151i R2
0136 0006
0138 5F00 CALL UPD&TE BEUIdAGE
0131 00000

RO: DBR #
Rl: SEGMENT #
R2: SEG ADDRESS
R3: SEG ATTRIBUTES
R4: SEG LIMITS!

IESTABLISH ARGUMENTS!
I RESTORE ARGUMENT POINTER I

013C 61FE LD R14, CREATE.ARG_PTR(R15|
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013E 0000
I RESTORE STACK ADDRESS 1

0140 61F1 LD RI, CREATE.SEGADDR(R15|
0142 0006
0144 2103 LD R3, #USERFCV
0146 1800
0148 61E4 LD R4, ARGLIST.IC(Rl4)
014A o01A

I RESTORE INITIAL NSP I
014C 61F5 LD R5, CREATE.NSP (315)
014E 0008
0150 7606 LDA R6, VIRTPREEMPTBETURN
0152 00761
0154 030F SUB '15, #8I 0156 0008
0158 1CF9 LDA SR15, R3, #4

015A 0303
I LOAD ARGUMENT POINTER FOR
CREATESTACK CALL I

015C AIFO LD RO. R15
015E 93F1 PUSH IR15, R1
0160 AlEl LD Rl, R14

I LOAD INITIAL REGISTER VALUES TO
BE PASSED TO USER PROCESS AS
INITIAL PARAMETERS. I

0162 5Cll LDM R2, ARG_LIST.REG(RI, #13
0164 020C
0166 0000
0168 97F1 POP al, aR15
016A 5F0 CALL CREATE-STACK
016C 00000

RO: ARGUMENT PTR
RI: TOP OF STACK
R2-R14: INITIAL
REG STATESS

INOTE: THE ABOVE INITIAL RE3 STATES
REPRESENT THE INITIAL PARAMETERS
(VIZ., REGISTER CONTENTS) THAT A
USER PROCESS VILL RECEIVE UPON
INITIAL EXECUTION. I

016E 010F ADD R15, #8 IOVERLAY PARAMETERSI
0170 0008

I ALLOCATE KST I
0172 2103 LD R3, #KSTLIHIT
0174 0001
0176 5F00 CALL MMALLOCATE IR3:# OF BLOCKS
0178 00000

RETURNS
R2:START ADDRI

I RESTORE DBR I
017h 61F0 LD RO, CREATE.DBRNUK(Rl5)
017C 0002

I SAVE KST ADDRESS 1
017E 6FF2 LD CREATE.SEGADDR(R15, R2
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0180 0006
IMAKE MEU ENTRY FOR KST SEGI

0182 2101 LD Rl #KSTSEG
0184 0002
0186 2103 LD R3, #RITE IATTRIBUTEI
0188 0000
018A 2104 LD R4, #KST_LIKIT-1

018C 0000
018E 5F00 CALL UPDATEMHU_IHAGB
0190 0000*

IR0: DBR #
R1: SEGMENT #
R2: SEG ADDRESS
R3: SEG ATTRIBUTES
R4: SEG LIMITS!

I RESTORE KST ADDRESS I
0192 61F2 LD R2, CREATE.SEGADDR(R15)
0194 0006

1 CREATE INITIAL KST STUB 1
0196 SF0 CALL CREATE KST IR2:KST ADDRI
0198 olkOf

I REMOVE TEMPORARY VARIABLE
STACK FRAME. I

019A olOF ADD R15, #SIZEOF CREATE
019C O00A
019E 9E08 RET
olkO END CREATEPROCESS
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o1AO CREATEKST PROCEDURE

* CREATES KST STUB FOR
* PROCESS MANAGEMENT

* * DENO. INSERTS ROOT *
* ENTRY IN KST. NOT *
* INTENDED TO BE FINAL *
* PRODUCT.

* PARAMETERS:
* R2: KST ADDRESS

ENTRY
INOTE: THIS PROCEDURE IS A STUB USED
FOR INITIALIZATION IN THIS IMPLEMENTATION
ONLY. THE ACTUAL INITIALIZATION CODE
FOR THE KST VILL RESIDE AT THE SEGNENT
MANAGER LEVEL ONCE IMPLEMENTATION OF
SYSTEM INITIALIZATION IS EFFECTED. I

! CREATE ROOT ENTRY IN KST I
01A0 1406 LDL RR6, #-I IROOT HANDLEI
01A2 FFFF
01A4 FFFF
01A6 5D26 LDL KST.MMHANDZ(R2), RR6
0 1A8 0000

ISET ROOT ENTRY # IN GAST
01AA 4D25 LD KST.MM_HANDLE[2](R2), #0
01AC 0004
01AE 0000

! SET ROOT CLASSIFICATION I
OlBO 1406 LDL RR6, #SYSTEMLOU
01B2 0000
01B4 0000
01B6 5D26 LDL KST.CLASS(R2), RR6
01B8 OooA

ISET MENTOR SEG #1
01BA 4C25 LDB KST. M_SEG NO(R2) , #0
OIBC 000E
01BE 0000

IINITIALIZE FREE KST ENTRIES
: 1FOR DEMO. NOT FULL KST!

01C0 2101 LD Ri, #10
01C2 OOOA

DO
01C4 OB01 CP RI, #0
01C6 0000
01C8 5WE IF EQ THEN EXIT FI
01CA 01DO'
01CC 5E08
01CE 01DE'
01DO 0102 ADD R2, #SIZEOF KST_REC
01D2 0010
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0 1D4 '&C25 LDB KST. KSEGNO (R2) OF
01ID6 OOOE
01D8 F!??
0OlDA ABlO DEC 2 1
OIDC 1813 0D
OlDE 9E08 RET
0110 END CREATE3KST
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OlEO TCADVANCE PROCEDURE
* **• *,*** ***** ** *,888* * **,****

* EVENTCOUNT IS ADVANCED BY
* INVOCATION OF MR-ADVANCE. $
* PROCESSES THAT ARE AWAITING
* THIS EVENT OCCURRENCE ARE
* REMOVED FROM THE BLOCKED LIST*
* AND MADE READY. THE READY **LISTS ARE THEN CHECKED TO
* INSURE PROPER SHEDULING IS 

* EFFECTED. IF NECESSARY VIR- *
* TUAL PREEMPTS ARE SENT TO ALL*
* THOSE VP'S BOUND TO LOVER

* * PRIORITY PROCESSES. *

* PARAMETERS: *
* Rl: HANDLE POINTER *

* R2: INSTANCE (EVENT #) *

* RETURNS: 
* RO: SUCCESS CODE S

ENTRY
I ESTABLISH TEMPORARY VARIABLE
STACK FRAME. I

01EO 030F SUB R15, #SIZEOF TEMP
01E2 0012

! SAVE INPUT ARGUMENTS 1
OE4 6FF1 LD TEMP.HANDLPTR(R151, Rl
01E6 0000
01E8 6FF2 LD TEMP.EVENTNR(R15), R2
0lEA 0002

I LOCK APT I
01EC 7604 LDA R4, APT.LOCK
0lEE 00001
olFo 5F00 CALL KLOCK
01F2 0000*

I RETURNS WHEN APT IS LOCKED I
I ANNOUNCE EVENT OCCURRENCE BY
INCREMENTING EVENTCOUNT IN GASTI

01F4 5F00 CALL MR ADVINCE IR1:HANDLE PTR
0176 0000*

R2 :INSTANCE
RETURNS:
RO:SUCCESS CODE
RR2: EVENTCOUNT 1

0178 OBO0 CP 2O, #SUCCEEDED
01FA 0002
01FC 5EOE IF EQ THEN
01FE 0372'

I SAVE EVENTCOUNT I
0200 5DF2 LDL TEMP.EVENTVAL(R15), R22
0202 0004
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I RESTORE INSTANCE I
0204 61F0 LD RO, TESP.EVENT_NR(R15)
0206 0002

I RESTORE HANDLE POINTER I
0208 61F1 LD R1, TENP.HANDLEPTR(R15)I 020k 0000

0 SAVE HANDLE 
I

020C 5414 LDL RR4, HANDLE_V&L.HIG(RI)
020E 0000
0210 5DF4 LDL TEMP.HANDLE HIGH(RI5), 184
0212 OOOC
0214 6114 LD R4, HANDLEVAL.LOV(Rl)
0216 0004
0218 6FF4 LD TEHP.HANDLE2LOW(R15), 14
021A 0010

I AIAKEN ALL PROCESSES AVAITING
THIS EVENT OCCURRENCE I

I GET FIRST BLOCKED P3OCESS I
021C 6101 LD RIi APT.BLOCKEDLIST
021E 000Ok
0220 7606 LDA R6, APT.BLOCKEDLIST
0222 000A'

WAKEUP:
DO
I DETERMINE IF AT END OF BLOCKED LIST I

0224 OB01 CP Rl, $NIL
0226 FFF

IF EQ I NO NORE BLOCKED PROCESSES 1
0228 53OE THEN EXIT FROM WAKEUP
022k 0230'
022C 53080223, 0234'
022E 02B41

FI

I SAVE NEXT ITEM IN LIST 1
0230 6117 LD R7, APT.AP.NEXT_AP(RIJ
0232 0020'

2 DETERMINE IF PROCESS IS ASSOCIATED
WITH CURRENT HANDLE 1

0234 54F4 LDL RR4 TEEP.HANDLE_HIGH(R15)
0236 OOOC
0238 5014 CPL RR4., APT.AP.HANDLE(RI)
023k 0030'

IF EQ IHIGH HANDLE VALUE HATCHES!
023C 53OE THEN
0232 02A2'
0240 61F4 LD R4, TERP.IIANDLE_LOV(R15)
0242 0010
0244 4514 CP R4, APT.AP.HAIDLE(2](RI)
0246 0034'

IF EQ I HANDLE'S BATCH I
0248 53OE THEN I CHECK FOR INSTANCE BATCH !
024A 029C'
024C 61P0 LD RO, TEOP.EVENTNR(R15)
0243 0002
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0250 4810 CP 3O, APT.&P. NSTANCE(RI)
0252 0036'

IF EQ I INSTANCE HATCHES I

0254 520 THEN IDETERMINE IF THIS IS THE
0256 02961

I OCCURRENCE THE PROCESS
i WAITING FOR I

0258 54F2 LDL R2, TERP.VENTVAL(R15)S0 25A 0004

0 CPL R22, APT.AP.VLOE(El
025E 0038'

IF GE $AWAITED EVENT HAS OCCURREDI
0260 5E01 THEN I AWAKEN PROCESS I
0262 0290'

I REHOVE FROM BLOCKED LIST I
0264 2F67 LD a36, R7

I SAVE LOCAL VARIABLES I
0266 91F6 PUSHL a815, R6

ISET LIST THREADING ARGUJENTS1

0268 6112 LD R2, APT.AP.AFFINITY(RI)
026A 002CO
026C 7623 LDA R3, APT.READYLIST(R2)
026E 0006'
0270 7604 LDA R4, APT.AP.NEXTAP
0272 0020'
0274 7605 LDA R5, APT.AP.PRI
0276 0028'
0278 7606 LDk R6, APT.AP.ST&TE
027A 002A'
027C 2107 LD R7, #READY
0273 0001
0280 A112 LD R2, R1
0282 5FO0 CALL LISTINSERT
0284 0000*

IR2: OB ID
R3: LIST HEAD PTR
R4: NEXT OBJ PTE
R5: PRIORITY PTR
R6: STATE PTR
R7: STATE VALUE I

I RESTORE LOCAL VARIABLES I
0286 95F6 POPL RR6, aR15
0288 210B LD R11, #REMOVED
028k ABCD
028C 5308 ELSE IPROCESS STILL BLOCKEDI
028E 0292'
0290 8DB8 CLR R11

FI I END VALUE CHECK I

0292 5E08 ELSE IPROCESS STILL BLOCKEDI
0294 0298'
0296 8DB8 CLR Rll

Fl I END INSTANCE CHECK I
0298 5308 ELSE IPROCESS STILL BLOCKED1
029k 029E'
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029C 8DB8 CLR Rll
?I I END HANDLE CHECK I

029E 5E08 ELSE IPROCESS STILL BLOCKED!
0210 02A4'
0212 8DB8 CLR Rll

FI I END HIGH HANDLE CHECK 1
t RESET AP POINTER REGISTERS I

02A4 OBOB CP R11, #REMOVED
02A6 ABCD

IF NE I PROCESS IS STILL BLOCKED I
02A8 5206 THEN
021A 02B0'
02AC 7616 LDA R6, APT.AP.NEXTAP(RI)
02AE 0020'

FI
02BO 1171 LD RI, R7
02B2 E8B8 OD

I DETERMINE IF ANY VIRTUAL PREEMPT
INTERRUPTS ARE REQUIRED I

02B4 8D28 CLR R2
PREEMPT-CHECK :DO

0286 0802 CP R2, #NR_CPU * 2
02B8 0004

02BA 5EOE IF EQ IALL READY LISTS CHECKEDI THEN
02BC 02C2'
02BE 5E08 EXIT FROM PREERPTCHECK
02C0 0366'

FI
I CREATE PREEMPT VECTOR FOR VP'S I

02C2 8D18 CLR R!
DO IFOR R1=1 TO NRVP*S!

02C4 1910 INC R1
02C6 4B21 CP R1, APT.VP.NRVP(R2)
02C8 0010'

IF GT I PREEMPT VECTOR COMPLETED I
02CA 5E02 THEN EXIT
02CC 02D21
02CE SE08
02D0 02D89

F1
02D2 ODF9 PUSH RE15, #TRUE
02D4 0001
02D6 E8F6 OD

I # TO PREEMPT I
02D8 8D38 CLR R3
02DA 6124 LD R4, APT.VP.NRVP(R2)
02DC 0010'

I # OF VP'S I
I GET FIRST READY PROCESS I

02DE 6121 LD Rl APT.READYLIST(92)
02EO 0006'

CHECKRDYLIST:
DO
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I SEE IF READY LIST IS EMPTI 1
0232 0B01 CP Rl, *NIL
02E4 FFFF

IF EQ ILIST IS EMPTY!
0236 5ME THEN EXIT FROM CHECKRDYLIST
02E8 02EE'
02EA 5E08
02EC 0324'

71

023E 4D11 CP &PT.AP.STATE(RI), #RUNNING
02FO 002A4
02F2 0000

IF EQ IPROCESS IS RONNING!
02F4 53OE THEN IDONIT PREEMPT IT!
02F6 030C'
0278 6115 LD R5, APT.AP.VPID(RI)
02FA 002E'

ICOMPUTE LOCATION IN PREEMPT VECTOR!
02FC 4325 SUB R5, kPT.VP.FIRST(R2)
02FE 0014'
0300 74F6 LDk R6, R15(R5)
0302 0500
0304 0D65 LD aR6, #FALSE
0306 0000
0308 5E08 ELSE I PREEMPT IT I
0301 030E
030C A930 INC R3

?I
030E AB40 DEC R4
0310 OB04 CP R4, #0
0312 0000

IF EQ IALL VPOS VERIFIED!
0314 53OE THEN
0316 031C'
0318 5E08 EXIT FROM CHECK_RDT_LIST
031A 0324'

71
I GET NEXT AP IN READY LIST I

031C 6110 LD RO, APT.AP.NEXT_AP(RI)
0313 0020'
0320 A101 LD R1, RO
0322 ESDF OD IEND CHECK_RDYLISTI

I SET NECESSARY PREEMPTS I
0324 6124 LD R4, APT.TP.NR_VP(R2)
0326 0010'
0328 6121 LD Rl, kPT.VP.FIRST(R2)
032£ 0014'

SENDPREEMPT:
DO

032C 9770 POP RO, i15
1 CHECK TEMPLATE I

032E OBOO CP RO, #TRUE
0330 0001

IF EQ ICAN BE PREEMPTED
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0332 53OE THEN
0334 0350'
0336 OB03 CP B3, #0
0338 0000

IF GT IPREENPTS REQUIREDI
033A 5302 THEN IPREEIPT ITSI033C 0350'

ISAVE ARGUNENTSI
0333 93F1 PUSH 815, A1
0340 91F2 PUSHL 4815, RR2
0342 93F4 PUSH O15, R4
0344 5FO0 CALL SETPREEAPT
0346 0000'

IRI: VP IDI
I RESTORE ARGURENTS I

0348 97F4 POP R4, 1R15
0341 95F2 POPL RR2, iiR15
034C 97P1 POP Al, aR15
0342 1830 DEC R3

PI
FI

0350 1911 INC R1, #2
0352 AB40 DEC R4
0354 OB04 CP R4, #0
0356 0000

IF EQ ISTACK RESTORED!
0358 530E THEN
0351 0360'
035C 5E08 EXIT
035E 0362'

FI
0360 EE5 OD IEND SEND PREEMPT!

! CHECK NEXT READY LIST I
0362 1921 INC R2, #2
0364 E8 OD lEND PREEdPTCHECK!

I UNLOCK APT 1
0366 7604 LDA R4, APT.LOCK
0368 00001
0361 5FO0 CALL KUNLOCK
036C 0000*

I RESTORE SUCCESS CODE I
0368 2100 LD RO, #SUCCEEDED
0370 0002

FI
I RESTORE STACK I

0372 010? ADD R15, #SIZEOP TRIP
0374 0012
0376 9808 RET
0378 END TCADVANCE
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0378 TCAWAIT PROCEDURE

* CHECKS USER SPECIFIED VALUE *
* AGAINST CURRENT EVENTCOUNT *
* VALUE. IF USER VALUE IS LESS
* THAN OR EQUAL EVENTCOUNT THEM*I* CONTROL IS RETURNED TO USER. *

* ELSE USER IS BLOCKED UNTIL *
* EVENT OCCURRENCE. ,

* PARAMETERS: *
* RI: HANDLE POINTER *

* R2: INSTANCE (EVENT #)
* RR4: SPECIFIED VALUE ,

* RETURNS: *

* RO: SUCCESS CODE *

ENTRY
! ESTABLISH STACK FRAME FOR
TEMPORARY VARIABLES. I

0378 030F SUB R15, #SIZEOF TEMP
037A 0012

! SAVE INPUT PARAMETERS !
037C 6FF1 LD TEMP.HANDLEPTR(R15), Rl
037E 0000
0380 6FF2 LD TEMP.EVENT_NR(R15), R2
0382 0002
0384 5DF4 LDL TEMP.EVEBNT_VL(R15), RR14
0386 0004

I LOCK APT 1
0388 7604 LDA R4, APT.LOCK
0381 00001
038C 5FO0 CALL KLOCK
038E 00000

I RETURNS WHEN APT IS LOCKED I
I GET CURRENT EVENTCOUNT 1

0390 5100 CALL MMREADEVENTCOUNT
0392 0000*

IRI:HANDLE POINTER
R2: INSTANCE

RETURNS:
RO: SUCCESSCODE
RR4: EVENTCOUNT!

0394 OBOO CP O, #SUCCEEDED
0396 0002
0398 5MOE IF EQ THEN
039A 0440'

1 DETERMINE IF REQUESTED EVENT
HAS OCCURRED I

039C 54F6 LDL RR6, TEMP.EVENTVAL(R15|
039E 0004
03AO 9046 CPL R6, RR4
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IF GT IEVENT HAS NOT OCCURREDI
03A2 5E02 THEY IBLOCI PROCESS!
04 

t DENTIFY PROCESS I
03A6 5F00 CALL RUNNINGVP IRETURNS:
03A8 0000* R1:VP ID

R3:CPU #1
I SAVE RETURN VARIABLES I

03AA 6F1I LD TEfP. ID.VP(R15), R1
03AC 0008
03AE 61P3 LD TElP.CPU NUll(R15), R3
0380 000A
03B2 6118 LD R8, APT.RUNNIG_.IST(RI)
03B14 0002'

! RESTORE REMAINING ARGUENTS I
0386 61P2 LD R2, TEIBP.EVENT-NR(R151

' 03B8 0002
038A 611 LD Ri, TERP.HANDLEPTR(R15)
03BC 0000

! SAVE EVENT DATA I03BE 5415 LDL R94, HANDLEVAL.HIGH(R1)
03co 0000
03C2 5D84 LDL APT.AP.HANDLE(R8), R84
03C14 00301
03C6 6114 LD R4, HANDLEVAL.LOW(RI)
03C8 0004
03CA 6F84 LD kPT.AP.HANDLEC2](R8), R4
03CC 0034'
03CE 6F82 LD &PT.AP.INSTANCE(18, R2
03DO 0036'
03D2 54F6 LDL RR6, TEMP.EVENTVAL(R151
03D4 0004
03D6 5D86 LDL APT.AP.VALUE(R8), R6
03DB 0038'

1 REMOVE PROCESS FROM READI LIST I
03DA 6181 LD R1, APT.AP.AFFINITY(RN)
03DC 002C'
03DE 6112 LD R2, APT.READ!_LIST(1)
0330 0006'

! SEE IF PROCESS IS FIRST
ENTRY IN READY LIST I

03E2 8882 CP R2, R8IF EQ 1INSERT NEW READ! LIST HEADI
03E 530E THEN
0336 03154'
03E8 6183 LD R3, APT.AP.NEITAP(Ra)
0331 0020'
03EC 6713 LD APT.READ!_LIST(RI), R3
033E 0006'
037O 5308 ELSE IDELETE FROM LIST BOD!
03P2 0403'

DO
0374 6123 LD R3, APT.aP.NEZT_AP(R2)
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I

03F6 0020'
03F8 8883 CP R3, H8

IF EQ !FOUND ITEM IN LIST!
03FA 5ROE THEN
03FC 040'
03FE 6183 LD R3, APT.AP.NEZTAP(i8
0400 0020'
0402 6F23 LD APT.AP.NEXTAP(R2), R3
0404 0020'
0406 5E08 EXIT
0408 040E t

Ft
040A A132 LD R2, R3
040C EF3 OD

ITHREAD PROCESS IN BLOCKED LIST!
040E £182 LD R2, R8
0410 7603 LDA R3, APT.BLOCKEDLIST
0412 000A'
0414 7604 LDA R4, APT.AP.NEXTAP
0416 0020'
0418 7605 LDA R5, APT.AP.PRI
041k 0028'
041C 7606 LDA R6, APT.AP.STATE
041E 002k'
0420 2107 LD R7, #BLOCKED
0422 0002
0424 5FO0 CALL LIST-INSERT IR2:OBJ ID
0426 0000*,

03:LIST HEAD PTR
R4:NEXT OBJ PTR
R5:PRIORITY PTR
R6:STATE PTR
R7:STATE I

I GET CURRENT VP ID 1
0428 61F1 LD Rl, TEEP.IDVP(R15)
042A 0008
042C 61F3 LD R3, TEMP.CPU_NU(R15)
042E O00A

I SCHEDULE FIRST READY PROCESS !
0430 5FO0 CALL TCGETWORK I3I:P_ID
0432 0000'

R3:CPU #1
I UNLOCK APT !

0434 7604 LDA R4, APT.LOCK
0436 0000'
0438 5FO0 CALL K_UNLOCK
043A 0000*

t RESTORE SUCCESS CODE I
043C 2100 LD RO, #SUCCEEDED
043E 0002

FI
FI
I RESTORE STACK I
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0(440 010? kDD R15, #SIZZOP TEAP
0(442 0012
0'1444 9808 BET

0(446 END TCAII&IT
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0446 PROCESSCLASS PROCEDURE

* READS SECURITY ACCESS *
* CLASS OF CURRENT PROCESS *
* IN APT. CALLED BY SEG $
* MGR AND EVENT MGR

* LOCAL VARIABLES: 

* Rl: VPD 

* R5: PROCESS ID

* RETURNS: *
* RR2: PROCESS SAC *

ENTRY
0446 7604 LDA R4,APT.LOCK
0448 0000'
044A 5700 CALL KLOCK IR'4:-APT.LOCKI
044C 0000*
044E 5FO0 CALL RUNNINGVP IRETURNS:
0450 0000*

R 1: VPID
R3:CPU #1

0452 6115 LD R5,APT.RUNNINGLIST(R1)
S0454 00021

0456 5452 LDL RR2,APT.AP.SAC(R5)
0(458 0024'

1 UNLOCK APT !
045A 7604 LDA d4, APT.LOCK
045C 0000'
045E 5FO0 CALL KUNLOCK
0460 0000*
0462 9E08 RET
0464 END PROCESS-CLASS
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0464 GET DBR NUMBER PROCEDURE

* OBTAINS DBR NUMBER FROM APT *
* FOR THE CURRENT PROCESS. ,
* CALLED BY SEGMENT MANAGER *
,** **,*,******,*,**,,,,*,,,,*,*,i,*,*******....*

* LOCAL VARIABLES: *
* RI: VP ID
* R5: PROCESS ID *

* RETURNS:
* RI: DBR NUMBER

, ENTRY
INOTE: DBE # IS ONLY VALID WHILE PROCESSIS LOADED. THIS IS 50 PROBLEM IN SASS
AS ALL PROCESSES REMAIN LOADED. IN A

MORE GENERAL CASE, TOE DBR # COULD OILY
BE ASSUMED CORRECT WHILE THE APT IS LOCKED!

0464 7604 LDA R4,APT.LOCK
0466 0000'i0468 5FO0 CALL K- KIR4:-,APT. LOCKI
O046A 0000*

046C 5FO0 CALL RUNNING_VP IRETURNS:

R1: VPID
R3:CPU #1

0470 6115 LD R5,APT.RUNNINGLIST(R1)
0472 0002 t

0474 6151 LD RleAPT. AP.DBR(R5)
0476 0022f

I UNLOCK APT P
0478 7604 LDA R4, APT.LOCK
047h 00001
047C 5FO0 CALL KUNLOCK
0472 O0000e
0480 9208 RET
0482 END GETDBRNUBER

END TC
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Appendix C

DISTRIBUTED MEMRY8 MANAGER LISTINGS

Z8000ASK 2.02
LOC OBJ CODE STNT SOURCE STATEMENT

$LISTON STTY

DIST-.MR MODULE

CON STAN T

CREATECODE :250

DELETE CODE :=51
ACTIVATECODE :=52
DEACTIVATE CODE :253

SWAPINCODE :254

SWAP OUT CODE :255

NRCgU :=2
NRKSTENTRY 54
MAXSEGSIZE :=128
MAI..DBR NO 14
KSTSEG IO :=2
NROFSEGS :=10
BLOCK SIZE :=8
MEMAVAIL :%POO
GAST_.IMIT :210

INSTANCEl : 1
INSTANCE2 :2
INVALID INSTANCE 95
SUCCEEDED :=2

TYPE
H ARRAY ARRAY [3 WORD]
C5RMSG ARRAY (16 BYTE]
ADDRESS WORD

GASTREC RECORD
CUNIQUEID LONG

3LOBAL-ADDR ADDRESS
P LASTEJIO WORD
FLAG WORD
PARASTE WORD
NR ACTIVE WORD
NO ACTDEP BYTE
SIZE1 BYTE
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PGTBL ADDRESS
ALIASTBL ADDRESS
SEQUENCER LONG
EVENTI LONG
EVENT2 LONG

MRVPID WORD

SEQARRAY ARRAY [MAX_SEGSIZE BYTE]

$SECTION D4 MRDATA
GLOBAL

0000 MMCPUTBL ARRAY [NRCPU lN_VPID]

*1 $SECTION AVAIL5ME5
INTERNAL
! NOTE: MEMPOOL IS LOCATED IN

CPU LOCAL MEMORY. I
0000 HER-POOL ARRAI (SENAVAIL BYTE]

GLOBAL
! NOTE: NEXT BLOCK IS USED IN THE NSALLOCATE
STUB AS AN OFFSET POINTER INTO THE BLOCK
3F ALLOCATABLE MEMOR!. IT IS INITIALIZED
IN BOOTSTRAP LOADER. I

OpO0 NEXTBLOCK WORD
$SECTION SSG_FRAME DCL

INTERNAL
!N3TE: THESE RECORDS ARE "OVERLAYSO OR "FRAMES" USED

T3 DEFINE MESSAGE FORMATS. NO MEMORY IS ALLOCATED I
$ABS 0

0000 CREATEMSG RECORD CCR_- CODE WORD
CE_-d_HANDLE HABRAY
CEENTRY_NO SHORTINTEGER
CEFILL BYTE
CESIZE WORD
CECLASS LONG]

SABS 0
0000 DELETEMSG RECORD [DE_CODE WORD

DEA_HaNDLE HARRAY
DEENTRYNO SHORTINTEGER
DE_FILL ARRAY[7 BYTE]]

SASS 0
0000 ACTIVATESG RECORD f ACTCODE WORD

A_DBR_NO WORD
aVANDLE HAERAT

A_ENTRYNO SHORTINTEGER
ASEGMENT_NO SHORTINTEGRB
A-FILL LONG]

- 288-



SABS 0
0000 DEACTIVATE-MSG RECORD(DEACTCODE WORD

D -DBR 90 WORD
DNMAANDLE HARRAY

SS0DFILL 
ARRAY3 WORD]]

0000 SWAPINMSG RECORD (S_1..CODE WORD.1SI IA-ADLE aMARRAY
SI DBR - o WORD
SI ACCESS-AUTH BYTE
SI-FILLI BYTE

$kS0SIJILL ARRAr[2 WORD]]

0000 SWPOUTMSG RECORD (SOUTCODE WORD
SO DBR 50 WORD
SO 11K3ANDLE H_&RRAY
SO-FILL ARRAY(3 WORD]]

$ABS 0
0000 RETSUCCODE RECORD(SUC CODS BYTE

SC FILL ARRAY(15 BYTE]]

LABS 0
0000 R-ACTIVATE-ARG RECORD (RSUCCODE BYTE

R.FILL BYTE
R MR-HANDLE HARRAY
R CLASS LONG
R SIZE WORD
R-FILL1 WORD]

$ABS 0
0000 EB..HANDLE RECORD

CID LONG
ENTRYNO WORD

I
EXTERNAL

rG.ASTLOCK WORD

GAIST ARRAYGASTLIffI GASTREC]

*KLOCK PROCEDURE

KJJMLOCK PROCEDURE

GBTC PUVO PROC EDU RE

SIGNAL PROCEDURE

WAIT PROCEDURE
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GLOBAL
SSECTION DMM...PROC

0000 553131? 335NTR PROCEDURE

* INTERFACE BETWEEN SEG MGR
* (CREATESEG PROCEDURE) IND
* SNGR PROCESS (CREATSEITRY
* PROCEDURE). ARRANGES AND

*PERFORMS IPc.

* REGISTER USE:
* PARAMETERS

*RO:SUCCESSCODZ (RET)
*R1:HPTR (INPUT)
*R2:ENTRYN0 (INPUT)
*R3:SIZE (INPUT)
* R4:CLASS (INPUT)
LOCAL US!

* 6:55 HANDLE ARRAY ENTRY
*R8:-CONMSGBUF

* 13:-oCOM SGEUF

ENTRY
IUSE STACK FOR MESSAGEI

0000 030F SUB R15,#SIZEOF COSISG
0002 0010
00014 AlFD LD R13,115 I -COM3SGBUF I

I FILL COIMSGBUF (LOAD IIESSAGEJ. CREATE NSG
FRAME IS BASED AT ADDRESS ZERO. IT IS
OVERLAID ONTO COM_3SGBUF FRARE BY INDEXING
EACH1 ENTRY (I.E. ADDING TO EACH ENTRY) THE
BASS ADDRESS OF COKMSGBUFI

0006 '4DD5 LD CREATE_3SG.CRODE(R3),CBETE.CODE
0008 0000
0001 0032
OOOC 3116 LD R6,R1(#O) IINDEX TO MMHANDLE ENTRY!
0003 0000
0010 6FD6 LD CREATE MSG.CE_ MMJIANDLE(0] (113) ,R6
0012 0002

4 0O14 3116 LD R6,R1(#2)
0016 0002
0018 6FD6 LD CREATEESG.CE_3M3ANDLE( 13(113) .16
001A 00054
001C 3116 LD R6.R1(#4)
001E 0004
0020 6FD6 LD CREATE3lSG.CEM3ANDLE(2](313) .16
0022 0006
0024 6FD2 LD CREATEMISG.CEEBNTRYJSO CR13),.22
0026 0008
0028 5DD4 LDL CREATE55IG.CELASS(R3)RR4
002A OOOC
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002C 6FD3 LD CREATEMSG.CESIZE(R13) ,3
002E O00A
0030 AIDS LD R8,R13
0032 5FO0 CALL PERFORM IPC IR8: -vCOfSGBUF!
0034 018C'

IRETRIEVE SUCCESSCODE FROM RETURNED MESSAGE!

0036 8D08 CLR RO
0038 60D8 LDB RLO,REZ_SUC_CODE.SUC_CODE(R13)
003A 0000
003C 010 ADD R15,#SIZEOF CONMSG IRESTORE STACK STATE!
003E 0010
0040 9Z08 RET
0042 END MKCREATE_ENTRY
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00142 MNDZLZTEZNTRY PROCEDURE

* INTERFACE BETWEEN SEG IGR
* (DELETE SEG PROCEDURE) AND
* MAGR (DELETEEN1TR! PROCEDURE).*

* ARRANGES AND PERFORMS INC.***** ****** ** ** **

* RZGISTER USE:'I * PARAMETERS
* R0:SUCCESS-CODE(UT)
* R1:HPTR (INPUT)

* * R2: ENTRYNO (INPUT)
* LOCAL USE
* R6:NM-ANDLB ARRAY ENTRY
* R8:-%CON-NSGBUF
* R13:CON-HSGBUY

ENTRY
IIJSE STACK FOR MESSAGEI

00142 030F SUB R15,#SIZEOF COX-MSG
0044 0010
00146 AIFD LD R13,R15 I *COHMSGBUF 1

!FILL COMMASGBUF (LOAD MESSAGE). DELETEINSG RAME
IS BASED AT ADDRESS ZERO. IT 15 OVERLAID ONTO
COMMfSGBUF FRAME BY INDEXING EACH ENTRY (I.E. ADD-
ING TO EACH ENTRY) THE BASE ADDRESS OF CO8_MSGBUFI

*00148 4DD5 LD DELETEMSG.DECODE(RI3) .#DELETECODE
0014A 0000
0014C 0033
0014E 3116 LD R6,Rl(#0) IINDEX TO MMHANDLZ ENTRY1
0050 0000
0052 6FD6 LD DELETEiSG.DEMMJIHANDLE[O(0J(13) ,R6
00514 0002
0056 3116 LD R6,Rl(#2)
0058 0002
005A 6FD6 LD DELETEBSSG.DEMM..HANDLEE 1] (313) ,R6
005C 00014
005E 3116 LD 36.1 (#14)
0060 00014
0062 6FD6 LD DELETE_ SG. DEMMRHANDLE( 2] (R13) .16
00614 0006
0066 6FD2 LD DELETEMSG.DE.ENTEYJIO(R13).12
0068 0008
006A AIDS LD R8,R13
006C 5700 CALL PERFORHIPC IR8: -C0MMRSGBUFI

0062 18C, IRETRIEVE SUCCESS .CODE FROM RETURNED MESSAGEI
0070 8008 CLE R0
0072 60D8 LDB RLO,RET SUC .CODE.SUCCODE(R1
00714 0000
0076 0107 ADD R15,#SIZEOF COMMSG IRESTORE STACK STATES
0078 0010
0071 9308 RET
007C END B5lDLTENTRY
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007C MACTIVATE PROCEDURE

* INTERFACE BETWEEN SEG AGA *

* (MAKEKNOVN PROCEDURE) AND *
N AMGR (ACTIVATE PROCEDURE) •

* ARRANGES AND PERFORMS IPC. •

• REGISTER USE:
• PARAMETERS *

SR!: DBR_NO (INPUT) •
SR2: HPTR (INPUT) •

* R3:ENTR NO*
; R4:SEGMENT-NO *
* R12:RETAHNDLEPTR •
* LOCAL USE *

• R8:-'COMSGBUF •
* R13:-CON-_SGBUF •
• RETURNS: •
• RO:SUCCESS CODE •

RR2:CLASS •
• R4:SIZE *

ENTRY
IUSE STACK FOR MESSAGE!

007C 030F SUB R15,#SIZEOF CONMSG
007B 0010
0080 AIFD LD R13,R15 I -CONMSGBUF I

I SAVE RETURN HANDLE POINTER I
0082 93FC PUSH 1R15, R12

IFILL COMMSGBUF (LOAD MESSAGE). ACTIVATESSG FRAME
IS BASED AT ADDRESS ZERO. IT IS OVERLAID ONTO
COMMSGBOF FRAME BY INDEXING EACH ENTRY (I.E. ADD-
ING TO EACH ENTRY) THE BASE ADDRESS OF COMBSGBUFI

0084 4DD5 LD ACTIVATEMSG.ACT_COD(R13) ,#ACTIVATE_CODE
0086 0000
0088 0034
008A 6FD1 LD ACTIVATESSG.ADB1_NO(R13) ,R1
008C 0002
008E 3126 LD R6,R2(#0)
0090 0000
0092 6FD6 LD ACTIVATEMSG.ABBHNDLE[O](R13),R6
0094 0004
0096 3126 LD R6,R2(#2)
0098 0002
009A 6FD6 LD ACTIVATEZSG.LRMHANDLE[ 1 ](R13) R6
009C 0006
009E 3126 LD &6,R2(#4)
OOAO 0004
00A2 6FD6 LD ACTIVATE_NSG.AMMBHANDLE[ 2 ](R13) ,R6
00A4 0008
00A6 6EDB LDB ACTIVATEMSG.AENTRUNO(R13,RL3
00A8 OOOA
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00AA 6EDC LDB ACTIYATE..ESG.ASGENT-O (E13) .1L4
OOAC 0008
00kB AID8 LD R8,313
0080 5100 CALL PZRPORM3IPC *1(R8:iCOMASGBUI!
0032 018CI

I RESTORE RETURN HANDLE POINTER I
0084 97FC POP R12, A115

I UPDATE 83_HANDLE ENTRY I
0086 54D6 LDL 336, R-ACTIVATBARG.R_59_ANDLE(R13)
0038 0002
003k 5DC6 LDL ffftBANDLE.ID(R12), R16
OOBC 0000
0081 61D6 LD R6,RACTIVATEARG.RUIiADL(2](R13)
OOCO 0006
00C2 6FC6 LD fMHANDLE.ENTR!NO(R12I. 16

OOCI 0011 IRETRIEVE OTHER RETURN ARGUMENTS I

00C6 8D08 CLE 30
00C8 60D8 LDB BLQ.RACTIVATEARG.ESUCCODB (3133
OOCA 0000
00CC 54D2 LDL RR2,RACTIVATE ABG.3 CLASS (313)
00CR 0008
OODO 61D41 LD R1,RACTIVATEARG.3_SIZE (1133I 0D2 OOOC
OODI 010F ADD R15,#SIZEOI COEMASG IRESTORE STACK STATE!
00D6 0010
O0DS 9108 RET
OODA END AN-ACTIVATE
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OODA dffDEACTIVATE PROCEDURE

*INTERFACE BETWEEN SEG MGR
*(TERMINATE PROCEDURE) AND
* MKGR (DEACTIVATE PROCEDURE).I * ARRANGES AND PERFORMS IPC.

REGISTER USE:
PARAMETERS
*R0:SUCCESS-CODE(RET)

*Rl:DBRN0(INPUT)

R 2:3PTR(INPUT)
LOCAL USE
*R6:MM-HANDLE ARRAY ENTRY
*RS:-COMMfSGBUF

*R13:-COMSGBUF

ENTRY
IUSE STACK FOR NESSAGE!

QODA 030F SUB RI5.GSIZEOF COMIMSG
OODC 0010
OODE A1PD LD R13,R15 I '%COMMSGBUF I

IFILL COMKMSGBUF (LOAD MESSAGE). DEACTTVATEMASG FRAME
IS BASED AT ADDRESS ZERO. IT IS OVERLAID ONTO
COMMSGBUF FRAMiE BY INDEXING EACH ENTRY (I.E. ADD-
ING TO EACH ENTRY) THE BASE ADDRESS OF COMMXSGBUFI

OOEO 4DDS LD DEACTIVATE-MSG.DEACTCODE (313),
00E2 0000 #DEACTIVATE..CODE
00E14 0035F 0E6 6FD1 LD DEACTIVATE ISG.DDBRNO (313) ,RI
00E8 0002
OOE& 3126 LD R6,R2(#0) IIDEX TO NKHANDLE ENTRY!
OOEC 0000
OOZE 6FD6 LD DEACTIVATEISG.DMMJIANDLE(0](Rl3),R6
OOFO 00014
00F2 3126 LD R6,R2(#2)

00F6 6FD6 LD DEACTIVATEMHSG.DMMHNDLE1](R3) .36
00P8 0006

OORORFC 13:004MMGBF

IRETRIEVE SUCCESSCODE FROM RETURNED MESSAGE!

0108 8D08 CLR 30
010A 60DB LDB RLORETSJCCODE.SUCCODE(R13)
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olOC 0000
o1oE 010? ADD R15.*SIZEO? CON-MSG IRESTORE STACK STATEI

0110 0010
0112 9E08 RET
0114 END MMDEACTIVITZ
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0114 MSWAP-IN PROCEDURE

* INTERFACE BETWEEN SEG MGR (SM-*
* SVAP_3N PROCEDURE) AND ANGR
* (SWAPIN PROCEDURE) . ARRANGES
* AND PERFORMS IPC.

* REGISTER USE:
* PARAMETERS
* RO :SUCCESS-CODE (RET)
* Rl :DBRNMO(INPUT)

*R2: HPTR (INPUT)
* 3:ACCESS (INPUT)
LOCAL USE

*R6: MR-HANDLE AREAY EK'7RT
*R8:-COMNSGBUF
*R13:-COMMSGBUF

ENTRY
IUSE STACK FOR RESSAGE!

0114 0307 SUB R15,#SIZEOF C05,MSG
0116 0010
0118 A1FD LD R13,R15 1 -CON MSGBUF I

!FILL COMKSGBUF (LOAD MESSAGE). 5VAPINK.SG FRANE
IS BASED AT ADDRESS ZERO. IT IS OVERLAID ONTO
COMMSGBUF FRAME BY INDEXING EACH ENTRY (I.E. ADD-
ING TO EACH ENTRY) THE BASE ADDRESS OF CON MSGBUF!

011A 4DD5 LD SWAPINISG.S_1NCODE CR13) .#SVAP..NSCDE
oliC 0000
011E 0036
0120 3126 LD R6,R2(#0) LINDEX TO MAHANDLE ENTRY!
0122 0000
0124 6Ffl6 LD SWAPINMSG.S~IMBHANDLE(](13),R6
0126 0002
0128 3126 LD R6,R2(#2)
012A 0002
012C 6FD6 LD SWAPIN MSG.SIMMJIHANDLEl 1](R1 3) .26
012E 0004
0130 3126 LD B6,92(#4)
0132 0004
0134 6FD6 LD SWAPINESG.51MMfiHANDLE( 2](R13) ,E6
0136 0006
0138 6FD1 LD SWAP13MSG.SIDBRN0(213) .R1
013A 0008
013C 6EDB LDB SWAPINMISG.STACCESS-AU!H (Rl3) 3L3
013E 0001
0140 A1D8 LD R8,R13
0142 5100 CALL PERFORM IPC 1R8: -COMSGBUFf
0144 018CI

IRETRIEVE SUCCESSCODE FROM RETURNED MESSAGE!
0146 8D08 CLR RO
0148 60D8 LDB RLO,RETSUC_.CODE.SUCCODE(R13)
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014A 0000
014C olop ADD R15,#SIZEOF CONBSG IRESTORE STACK STATE!
014E 0010
0150 9E08 RET
0152 END HNSWAP IN

I2
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0152 MM SWAP-OUT PROCEDURE

*INTERFACE BETWEEN SSG MG8 (51_*
*SWAPOUT PROCEDURE) AND MNGR *
*(SVAPOUT PROCEDURE). ARRANGBS*
AND PERFORMS IPC.

REGISTER USE:

PARAMETERS
D0:SUCCESSCODiE(RET)*

*R1:DBRIO(INPUT)

*R2: HPTR (INPUT)
LOCAL USE

*R6:MMJiHANDLE ARRAY ENTRY
*R8:-'COMJI1SGBUF
B 13:'COMJISGBUF

ENTRY
IUSE STACK FOR NESSAGE!

0152 030? SUB R15,#SIZEOF COxmMSG
0154 0010
0156 AlFO LD 113,R15 1-,CON MSGBUF I

!FILL CONNSGBUF (LOAD MESSAGE). SMAPOUTMSG FRANE
IS BASED AT ADDRESS ZERO. IT IS OVERLAID ONTO
CO0 .SGBUF FRAME BY INDEXING EACH ENTRY (I.E. ADD-
ING TO EACH ENTRY) THE BASE ADDRESS OF CON MSGBUFI

0158 4DD5 LD SWAPOUTfi3G.SOUT3ODE (113), #SWAPOUTCODS
015A 0000
015C 0037
015E 3126 LD R6,R2(#0) IINDEX TO MMJIANDLE ENTRY!
0160 0000
0162 6FD6 LD SVAP-OUTISG.SOIMJIANDLE(0J(313),R6
0164 0004
0166 3126 LD R 6,R2(62)
0168 0002
016& 6PD6 LD SWAP-OUT..SG.SOIBigANDLE( 1](113) ,.6
016C 0006
016E 3126 LD R6,12(#4)
0170 00014
0172 6FD6 LD SWAP -OOTISG.SOJIMIANDLEC 2](R 13) .16
0174 0008
0176 6FD1 LD SWAP-OUTJISG.SODBRNO(113),11
0178 0002
017A AIDS LD R8.113
017C 5FC' CALL PERFORKIPC 118: -COdJISGBUFI
017E 018c,

IRETRIETE SUCCESSCODE PROM RETURNED NESSAGE!
0180 8D08 CLE 10
0182 6008 LDB RLORETSUCCODB.SUCCODB(R3)
0184 0000
0186 010F ADD R15,#SIZEOF COMMSG IRESTORE STACK SThTRI
0188 0010
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018A 9E08 BET
018C END 98ESW&POT
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018C PERFORMJPC PROCEDURE

* SERVICE ROUTINE TO ARRANGE AND
* PERFORM IPC WITH THE HER 11GR PROC*

* REGISTER USE:
* PARAMETERS

* 8: -.COM MSG (INPUT)
* LOCAL USE
* R19 R2: WORK REGS
* R14: -GAST-LOCK*
* R13: -%COKHSGBUF

ENTRY
018C 93FD PUSH &El5,Bl3 I-mCOKM SGBUFI
018B 5100 CALL GET-CPUN0 IRET-Rl:CPUJNI
0190 00000
0192 All? LD R2,Rl
01914 6121 LD R1UEE-CPUBL(R2) LEE VP_3D!
0196 00001

*0198 7604 LDA R4,GASTLOCK
019A 0000*
019C SF00 CALL KLOCK
019E 00000
OlkO 5100 CALL SIGNAL LR1:KNJP-ID,8:-%COEEBSGBUFI
01A2 0000*
01A4 97FD POP 9l 3e3Rl5

01A6 AlD8 LD R8,R13 I-C05MSGBUFI
01AS 93FD PUSH &Rl5,R13
01AA SF00 CALL WAIT IR8:-COM-MSGBUFl
OlAC 0000*
01AE 7604 LDA 4GASTLOCK
01B0 0000*
01B2 SF00 CALL KUNLOCK
01B4 00000
01B6 97FD POP R13,dR15
0138 9E08 RET
OlBA END PERFORKIPC
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01BA M _ALLOCATE PROCEDURE

* ALLOCATES BLOCKS OF CPU*
S LOCAL MEMORY. EACH *
* BLOCK CONTAINS 256 *
* BYTES OF MEMORY.

* PARAMETERS: *
* R3: # OF BLOCKS
* RETURNS :
* R2: STARTING ADDR *

* LOCAL: *
* R4: BLOCK POINTER *

ENTRY
I NOTE: THIS PROCEDURE IS ONLY A STUB

OF THE ORIGINALLY DESIGNED MEMORY
ALLOCATING MECHANISM. IT IS USED
BY THE PROCESS MANAGEMENT DEMONSTRATION
TO ALLOCATE CPU LOCAL MEMORY FOR ALL
MEMORY ALLOCATION REQUIREMENTS. IN AN
ACTUAL SASS ENVIRONMENT, THIS WOULD
BE BETTER SERVED TO HAVE SEPARATE
ALLOCATION PROCEDURES FOR KERNEL AND
SUPERVISOR NEEDS. (E.G., KERNELALLOCATE
AND SUPERVISORALLOCATEJ. I

! COMPUTE SIZE OF MEMORY RSQUESTED I
01BA B331 SLL R3, #BLOCKSIZE
01BC 0008

I COMPUTE OFFSET OF MEMORY THAT IS
TO BE ALLOCATED I

01BE 6104 LD R4, 3EXT_BLOCK !OFFSET!
01C00OFO0'

01C2 7642 LDA R2, MENPOOL(R4) ISTART ADDRI
01C4 00001
01C6 8134 ADD R4, R3 IUPDATE OFFSET!

I UPDATE OFFSET IN SECTION OF AVAILABLE
MEMORY TO INDICATE THAT CURRENTLY
REQUESTED MEMORY IS NOU ALLOCATED I

01C8 6F04 LD NEXT-BLOCK, R4 ISAVE OFFSET!
01CA OFO0'

O1CC 9E08 RET
olCE END MMALLOCATE
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O1CE MM TICKET PROCEDURE
, .** *** ** * * *** ** **** ****** *

* RETURNS CURRENT VALUE OF *
* SEGMENT SEQUENCER AND *
* INCREMENTS SEQUENCER VALUE*
* FOR NEXT TICKET OPERATION *

* PARAMETERS: *
*R:SEG HANDLE T

* RETURNS:

* RR4: TICKET VALUE |
LOCAL VARIABLES: *

* RR6: SEQUENCER VALUE *
* R8: G-AST ENTRY *

, ***************************** I
ENTRY
I SAVE HANDLE PTR I

01CE 93F1 PUSH aR15, Ri
I LOCK GAST I

01DO 7604 LDA R, GASTLOCK
01D2 00000
01D4 5FO0 CALL K_LOCK
01D6 0000#

! RESTORE HANDLE PTR I
01D8 97F1 POP R1, &R15

I GET GAST ENTRY # I
OlDA 6118 LD R8, MM_HANDLE.ENTRYNO(Rl)
O1DC 0004

I GET TICKET VALUE I
01DE 5486 LDL RR6, GAST.SEQUENCER(R81
01EO 0014*

I SET RETURN REGISTER VALUE I
01E2 9464 LDL RR*, RR6

IADVANCE SEQUENCER FOR NEXT
TICKET OPERATION!

01E4 1606 ADDL RR6, #1
01E6 0000
0138 0001

I SAVE NEV SEQUENCER VALUE IN GAST I
01EA 5D86 LDL G.ST.SEQOENCER(R8), R£6
OlEC 0014*

1 UNLOCK GAST I
I SAVE RETURN VALUES I

OIEE 91F4 PUSHL &R15, RRI4
OPO 7604 LDA 24, GASTLOCK
01F2 0000*
01F4 5FO0 CALL KUNLOCK
01F6 0000*

I RETRIEVE RETURN VALUES I
01F8 95F POPL RR, a515
01FA 9E08 RET
oiC END MMTICKET
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o1FC 85NREADEVENTCOUNT PROCEDURE

* READS CURRENT VALUE OF THE *
* EVENTCOUNT SPECIFIED BY THE 0
* USER. 0

" PARANETERS:
* Rl: SEG HANDLE PTR
" R2: INSTANCE (EVENT #)

* RETURNS:
* 334: EVENTCOUNT VALUE

* LOCAL VARIABLES:
* 336: SEQUENCER VALUE
* R8: G-AST ENTRY #

ENTRY
I SAVE INPUT PARAMETERS i

O1PC 93F1 PUSH &R15, 31
01FE 93F2 PUSH OR15, 32

I LOCK GAST I
0200 7604 LDA 34, GAST-LOCK
0202 0000*
0204 SF00 CALL K LOCK

0206 0000 RESTORE INPUT PARAMETERS I
0208 97F2 POP R2, 3315
020A 97F1 POP Rl, &R15

I GET GAkST ENTRY # I
020C 6118 LD 38. M11_HANDLE.ENTRY-h10(al)
020B 0004

I READ EVENTCOUNT I
I CHECK WHICH EVENT # I
IF 32

0210 0302 CASE #INSTANCEI THEN
0212 0001
02114 5EOE
0216 0221
0218 5484 LDL 334. GAST.EVENT1(RS)
021A 0018*
021C 2100 LD 30. #SUCCEEDED
021Z 0002
0220 5E08 CASE #INSTANCE2 THEN
0222 023C'
0224 0802
0226 0002
0228 S5E2
022A 0238'
022C 5484 LDL 334. GAST.EVEMT2(981
022Z 001C*
0230 2100 LD 30. #SUCCEEDRD
0232 0002- 
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0234 5E08 ELSE IINVALID INPUT!
0236 023CI
0238 2100 LD a0, OINVALIDINSTANCE
023k 005F

7I

I NOTE: 30 VALUE IS RETURNED IF
USER SPECIIIED INVALID EVENT #1I SAVE RETURN VALUES I

023C 91F4 PUSHL SR15, RR4
I UNLOCK GAST I

023E 7604 LDA R4, GASTLOCK
0240 0000*
0242 5F00 CALL KUNLOCK
0244 00000

I RESTORE RETURN VALUES I
0246 95F4 POPL RR4, 1R15
0248 9E08 RET
024A END MRREADEVNTCOUNT
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024k alADVANCE PROCEDURE

* DETERMINES GAST OFFSET FROM *
* SEGMENT HANDLE AND INCREMENTS *
* THE INSTANCE(EVENT #) SPECIFIED *
* BY THE CALLER. THIS IN EFFECT *
* ANNOUNCES THE OCCURRENCE OF THE •
* EVENT. THE NEN VALUE OF THE •
* EVENTCOUNT IS RETURNED TO THE *

* CALLER.

* PARAMETERS: *
* Rl: HANDLE POINTER •
* R2: INSTANCE (EVENT #) •

* RETURNS: •
.i * RR2: NEW EVENTCOUNT VALUE •

ENTRY
I SAVE INPUT PARAMETERS I

024k 93F1 PUSH BR15, R1
024C 93F2 PUSH &R15, R2

I LOCK GAST I
02BE 7604 LDA R4, GASTLOCK
0250 00000
0252 5FO0 CALL KLOCK
0254 00000

I RESTORE INPUT PARAMETERS I
0256 97F2 POP R2, aRis
0258 97F1 POP Rl, aR15

I GET GAST OFFSET I
025k 6114 LD R4, BML_HANDLE.ENTRYNO(R)
025C 0004

1 DETERMINE INSTANCE I
IF R2

025E OB02 CASE #INSTANCE1 THEN
0260 0001
0262 530E
0264 027C'
0266 5442 LDL R32, GAST.EVENT1(R4)
0268 0018*
026k 1602 ADDL RR2, #1
026C 0000
0263 0001

I SAVE NEW EVENTCOUNT I
0270 5D42 LDL GAST.ZVENTI (R4), R12
0272 0018*
0274 2100 LD RO, #SUCCEEDED
0276 0002
0278 5E08 CASE #ISTANCE2 THEN
027k 0293'
027C OB02
0273 0002
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0280 5303
0282 029k'
02814 54142 LDL RR2, GAkST.EVENT2(&4)
0286 001CO
0288 1602 ADDL RR2, 11
028A 0000
028C 0001

I SAVE NEW EVENTCOUIT I
0283 5D42 LDL G-AST.VNT2(B4), R12
0290 0O1C*
0292 2100 LD HO, #SUCCEEDED
0294 0002
0296 5E08 ELSE IINVALID INPUT!
0298 0293'
029A 2100 LD RO, #INVALIDINSTASCE
029C 0057

F'
I NOTE: AN INVALID INSTANCE VALUE

WILL NOT AFFECT EVENT DATA I
0293 6014 I UNLOCK GAST I
029 704 LDA R14, GASTLOCK

OWA 5700 CALL KJ3NLOCK
*02k4 0000*

0216 9308 RET
02A8 END HHRADVANCE

END DISTHM
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Appendix D

GATE KEEPER LISTINGS

Z8000ASH 2.02
LOC OBJ CODE STNT SOURCE STATEMENT

K!! NEL-GAT E_3EPER NOD ULE

SLI STOW STTY

CON ST ANT
ADVANCE-CALL :
kWAITCALL :=2
CREATE SEGCALL :-3
DZLETE.SEGCALL :4
MAKE,_KNOVV CALL 5=
READCALL :=6
SM SWAP -INCALL :=7
SE SWAP OUT CALL :z8

TERMINATE CALL :=9
TICKETCALL :u10
WRITE CALL :=11
IRITELN CALL :=12
CRLF-CALL :=13
WRITE :=%01C8 IPRINT CHAR!
WRITELE : %OFCO 1PRINT MSGI
CRLF 3= OFD4 ICAR RET/LINE FEEDS
MONITOR % A902
RZGTSTERBLOCK : 32
rRAPCODEOFrSET :=36
IIITALID KERNELENTRY :~%BAD

GLOBAL
3ATEKEEPERENTRY LAB EL

EXTERNAL
ADVANCE PROCEDURE
AWAIT PROCEDURE
CREATESEG PROCEDURE
DELEPTE.SEG PROCEDURE
MAKE-KNOWN PROCEDURE
READ PROCEDURE
SM-SWAPIrN PROCEDURE
SMSWAPOUT PROCEDURE
TERIINATE PROCEDURE
TICKET PROCEDURE
KERNELEZXIT LABEL
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INTERNAL
$SECTION KEERELGATEPROC

0000 GATEKEEPERMAIN PROCEDURE

ENTRY
GATE KEEP ERENTR :

I SAVE REGISTERS I
0000 030F SUB R15, #REGISTERBLOCK
0002 0020
0004 1CF9 LDM &R15, R1, #16
0006 010F

I SAVE NSP I
0008 93F2 PUSH OR15, R2
000 7D27 LDCTL R2, NSP

I RESTORE INPUT REGISTERS t
OOOC 2DF2 EX R2, R15

I SAVE REGISTER 2 t
OOOE 93F2 PUSH 1R15, R2

I GET SYSTEM TRAP CODE I
0010 31F2 LD R2, R15(#TRAP_CODEDFFSET)
0012 0024

I REMOVE SYSTEM CALL IDENTIFIER FROM
SYSTEM TRAP INSTRUCTION !

0014 8C28 CLRB RH2
I NOTE: THIS LEAVES THE USER VISIBLE
EXTENDED INSTRUCTION NUMBER IN R2 I

! DECODE AND EXECUTE EXTENDED INSTRUCTION I
IF R2
! NOTE: THE INITIAL VALUE FOR REGISTER 2
WILL BE RESTORED WHEN THE APPROPRIATE
CONDITION IS FOUND I

0016 0B02 CASE #ADVANCE_CALL THEN
0018 0001
O01A 5EOE
O01C 0028'
001E 97F2 POP R2, OR15
0020 5F00 CALL ADVANCE
0022 0000*
0024 5E08 CASE #AWAITCALL THEN
0026 010C'
0028 0802
002A 0002
002C 5OE
002E 003A'
0030 97F2 POP R2, SR15
0032 5100 CALL AWAIT
0034 00000
0036 5108 CASE #CREATESEGCALL THEN
0038 010CO
003A OB02
003C 0003
0031 5101
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0040 or
0042 9712 POP R2, OR15
0044 5F0 CALL CREATE SEG
0046 0000*
0048 5108 CASE #DELETE SZGCALL THEN
004A OlOc'
004C 0802
0041 0004
0050 505
0052 00510054 97F2 POP R2, OIS1
0056 5F00 CALL DELETE SEG
0058 0000*
005k 5308 CASE #MAKEKNOVN CALL THEN
005C oloc'
0051 0802
0060 0005
0062 5EOE
0064 0070'
0066 97F2 POP R2, a150068 5FO0 CALL EAKE KNOWV
006A 0000*
006C 5108 CASE #READCALL THENi .I0062 0100 t

0070 08020072 0006
:- 0074 E
|0076 00820

0078 97F2 POP R2, 1115
007A SFO0 CALL READ
007C 0000*
007E 5108 CASE #SI SWAP INCALL THEN
0080 OlOc-
0082 0B02
0084 0007
0086 53
0088 0094'
008A 97F2 POP R2, 1115
008C 5700 CALL SM-SWAPIN
008E 0000,
0090 5108 CASE #SN SWAP OUT CALL THENP4 0092 010C-
0094 0B02
0096 0008
0098 53O
0091 00*6'
009C 9772 POP R2, 8815
009E 5FO0 CALL SN.SVAP OUT
0010 0000*
00A2 5108 CASE STERMINATE CALL THEY
0014 010C'
00*6 0802
O0AS 0009
OOAA 5101
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OOAC 0038'I. OAE 97P2 POP R2, aR15
0050 5F00 CALL TERMINATE10032 00000
0034 5108 CASE #TICKETCALL THEN
0036 OlOC'
0038 0B02
003A 000k
OOBC 5201

OOCE 501~

00D2 97F2 POP R2, &R15
00D4 5F00 CALL TICKT

00D8 5E08 CASE #MBITELCLL THEN

OOCA OB0C2
OODC 0302

0010 5101

0014 97F2 POP R2, &R15
0016 SF00 CALL WRITEL
0018 OFCO
0011 5108 CASE #CRITLF CALL THEN

OOEE 0B02
OOFO OODC

0032 01EE

00F6 97F2 POP R2, &R15
00F8 SF00 CALL CRITLF

OOFC 5108 ELSE #CIUV ALKEL IHNVOAIN

OOFE OOOD

4 ~ ~ ~ 0F 01ETR0T0MNTO

OF NOTE: TAIS REUN OMOIORI

00C B8 LS INLDKERNEL INVOCATION1NRAL

1RETURN TO MOSER I

0100 7601 LDA ii, £
0102 0100'
0104 2100 LD R0. #INVALIDKEBNELENTRY
0106 OBAD
0108 SF00 CALL MONITOR
010A A902

Fl

-311-



I SAVE REGISTERS ON KERNEL STACK I
I SAVE R1 I

010C 93F1 PUSH aR15, RI
I GET ADDRESS OF REGISTER BLOCK I

0102 34F1 LDA RI, R15(#4)
0 110 0004

! SAVE REGISTERS IN REGISrER BLOCK
ON KERNEL STACK. 1

0112 1C19 LDM SRI, R1, #16

0114 010F I RESTORE RI BUT MAINTAIN ADDRESS
OF REGISTER BLOCK I

0116 2DF1 EX Ri, &RIS
I SAVE R1 ON STACK 1

0118 33P1 LD R15(#4). R1
011A 0004

I RESTORE REGISTER BLOCK ADDRESS I
011C 97F1 POP RI, SRiS

I SAVE VALID EXIT SP VALUE I

0113 33F1 LD R15(#30), R1
0120 001E

I EXIT KERNEL BY MEANS OF HARDWARE
PREEMPT HANDLER I

0122 5E08 JP KERNELEXIT
0124 0000*
0126 END GATEKEEPER MAIN

END KERNELGATEKEEPER
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Z8000ASM 2.02

LOC OBJ CODE STMT SOURCE STATEMENT

USER-GATE MODULE

SLISTON STTY

CONSTANT
ADVANCE CALL : 1
AWAIT CALL : 2
CREATESEGCALL : 3
DELETESEG CALL : 4
MAKEKNOWNCALL 5
READ CALL 6
SNSWAPINCALL :m 7
S1 SWAP OUT_CALL : 8
TERMINATECALL :z 9
TICKETCALL : 10
WRITE-CALL : 11
WRITELNCALL := 12
CRLFCALL : 13

GL3BAL
$SECTION USER_GATEPROC

0000 ADVANCE PROCEDURE

* PARAMETERS: *
* R1:SEGMENT #
* R2:INSTANCE (ENTRY#)*

* RETURNS: *

* RO:SUCCESS CODE

ENTRY
0000 7F01 SC #ADVANCECALL
0002 9E08 RET
0004 END ADVANCE

0004 AWAIT PROCEDURE

* PARAMETERS:
* * RI:SEGNENT #

* R2:INSTANCE
* RR:SPECIFIED VALUE

* RETURNS: ,
* RO:SUCCESS CODE

ENTRY
0004 7F02 SC *AkITCALL
0006 9E08 RET
0008 END AWAIT
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0008 CREATESEG PROCEDURE

* PARAMETERS:
* R1:MENTOR SEG NO
* R2:.ENTRY-N0
* R3:SIZE

* RR4:CLISS

RETURNS:
" RO:SUCCESS CODE

ENTRY
0008 7703 Sc #CREATESEGCALL

*000A 9108 RET
0(JOC END CREATESEG

000C DELETE SEG PROCEDURE

* PARAMETERS:*
* R1:MENTORSEGNO NO

- I * R2:ZNTRY-NO

* RETURNS:*
* RO:SUCCESS CODE

EN TRY
OOOC 7704 SC #DELETESEGCALL
000E 9E08 BET
0010 END DELETE-SEG

0010 MAKE KNOWN PROCEDURE

* PARAMfETERS:
* R1:HENTORSEG-NO*
* R2:ENTRY-NO
* R3:ACCESS DESIRED *

* RETURNS:
* RO:SUCCESS CODE *
* R1:SEGMENT #
* R2:ACCESS ALLOWED

ENTRY
0010 7705 SC #MAKEKNOVNCALL
0012 9108 RET
0014 END MAKE-KNOVY

001(4 READ PROCEDURE

" PARAMETERS:
* R1:SEGMENT #
" R2:INSTANCE
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* RETURNS: *
* RO:SUCCESS CODE *

* RR'4:¥VENTCOUNT

ENTRY
0014 7F06 Sc #READCALL
0016 9E08 RET
0018 END READ

0018 SM_SWAPIN PROCEDURE

* PARAMETERS:
* R1:SEGMENT #

* RETURNS:
* RO:SUCCESS CODE

ENTRY
0018 7F07 SC #SIISWkPINCALL
001A 9E08 RET
001C END SMSWAPIN

001C SM SWAPOUT PROCEDURE

* PARAMETERS:
* Rl:SEGMENT #

* RETURNS: *
RO:SUCCESS CODE

ENTRY
001C 7F08 Sc #SMESWAP_OUT_CILL
001E 9E08 RET
0020 END SH_SVAPOUT

0020 TERMINATE PROCEDURE

PARAMETERS:
R1:SEGMENT #

* RETURNS: ,
RO:SUCCESS CODE

ENTRY
0020 7F09 SC #TERNINATE_CALL
0022 9E08 RET
0024 END TERMINATE

0024 TICKET PROCEDURE

PARAMETERS:
RI:SEGMENT #

* RETURNS: *
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* RO:SUCCESS CODE *

* RR4:TICKET VALUS *
********************8** !

ENTRY
0024 7FOA SC #TICKET_CALL
0026 9E08 RET
0028 END TICKET

0028 WRITE PROCEDURE
ENTRY

0028 7FOB SC #VRITEC&LL
002& 9E08 RET
002C END WRITE

002C WRITELN PROCEDURE
ENTRY

002C 7FOC SC #VRITELNACLL
j 002E 9E08 RET

0030 END WRITELN

0030 CRLF PROCEDURE
ENTRY

0030 7FOD SC #CRLF3CALL
0032 9E08 RET
0034 END CRLF
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Appendix 2

Z80IK20 BOOTSTRAPLOADBR LISTINGS

LOC OBJ CODE STST SOURCE STATEMENT

BOOTSTRAPLOADER MODULE

$LISTON ITT!
CONSTANT

I ******** SYSTEM PARAMETERS ****

NRCPU2
MR -VP : R-CPU*4
MR AVAILVP :NR-CPU*2
NAXDBRNR :10
S TACK SEG :1
STACK SEG-SIZE % 100
STACKBLOCK :SSTACK-SEG-.SIZE/256

I**OFFSETS IN STACK SEG *3

sTA*CKBASE *= STACK -SEG -SIZE-%1O
STATUS-BEG-BLOCK: = STACK SEG SIZE"1 10
INTERRUPT FRAME SSTACK-fiASE-4

I NTERRUPTREG :=INTERRUPT-FRAME-34
N -S P :INTERRUPT-REG-2
F-C-W STACKSEGSIZE-%E

I ****** SYSTEM CONSTANTS IW**
ON : FFFF
OFF :0
READY :
NIL : 1FFF
INVALID %B EZ
KERNEL PCW % 5000
AVAILABLE :0
ALLOCATED := F?
SC-OFFSET 12 12

TYPE

MESSAGE ARRAY (16 BYTE]
ADDRESS WORD
KM-VPID WORD
VP INDEX INTEGER
aSG-INDEX INTEGER
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MSG TABLE RECORD
i sG MESSAGE
SENDER VPINDEI
NEXT MSG MiSGJUNDEZ
FILLER &RRAT (6, WORD)

VP TABLE RECORD
(DBR ADDRESS
PuI WORD
STATE WORD
IDLEFLAG WORD
PREEMPT WORD
PHYSPROCESSOR WORD
NEXTREADY.3P VPIVDEI
MSG_.IST MSG INDEX
EXT_3D WORD

FILLER)l &BRAY[ 7, WORD]

EXTERNAL
GETDBRA&DDR PROCEDURE
CREATZESTACK PROCEDURE
LISTINSERT PROCIDURE
ALLOCATEBEHU PROCEDURE
UPDATEEEMU_3AGE PROCEDURE
Rd -ALLOCATE PROCEDURE
BE ENTRY LABEL
IDZ2_ENTRY LABEL
PREE[PTRET LABEL
BOOTSTRAPENTRT LABEL
GATEKEEPERENTRY LABEL
NEZTBLOCK WORD
IfNiCPUTBL ARRAYf NRCPU MR_3P.ID]

VPT RECORD
(LOCK WORD
RUNNING-LIST ARRAY(MR-CPU WORD]
READYJD,,IST ARRAY[ NR_3PU WORD]
FRELIST ASGINDEI
VIRTINTVEC ARRATf 1. ADDRESS]

fFILLZR_2 WORD
VJP ARRAY (NR_3P, VPTABLE]
MSG-Q ARRAY ENRVP, SSGTABLE]
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EIT_VPLIST ARRAr(NRAVAILVP WORD]
NEXT_AVILIMU ARRAYfMAXDBRNR BYTE]

PRDS RECORD
[PHS.S_CPU.ID WORD
LOG CPiID INTEGER
VP.3R WORD
IDLEVP VP_ZNDEX]

INTERNAL

$SECTION LOADERDATA

I NOTE: THESE DECLARATIONS WILL NOT WORK
IN A TRUE BULTIPROCESSOR ENVIRORMENT AS
THEY ARE SUBJECT TO A "CALL." THEY BUST
BE DECLARED AS A SHARED GLOBAL DATABASE
WITH "RACE" PROTECTION (E.G., LOCK). I

0000 NEKTMIL_VP INTEGER
0002 NEXTEITVP INTEGER
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$SECTION LOADERINT
INTERNAL

0000 BOOTSTRAP PROCEDURE

* CREATES KERNEL PROCESSES AND *
* INITIALIZES KERNEL DATABASES.*
* INCLUDES INITIALIZATION OF *

* VIRTUAL PROCESSOR TABLE, *
* EXTERNAL VP LIST, AND NMU *
* IMAGES. ALLOCATES IMU IMAGE *
* AND CREATES KERNEL DOMAIN i
* STACK FOR KERNEL PROCESSES. *

ENTRY
! INITIALIZE PRDS AND dMU POINTER I
I NOTE: THE FOLLOWING CONSTANTS ARE
ONLY TO BE INITIALIZED ONCE. THIS
WILL OCCUR DURING SYSTEM INITIALIZATIONI

0000 4D05 LD PRDS.PHYSCPUID, #ZFFFF
0002 0000*
0004 FFFF I NOTE: LOGICAL CPU NUMBERS ARE ASSIGNED

IN INCREMENTS OF 2 TO FACILITATE INDEXING
(OFFSETS) INTO LISTS SUBSCRIPTED BY
LOGICAL CPU NUMBER. I

0006 0D05 LD PRDS.LOGCPU_1D, #2
0008 0002*
OOOA 0002

1 SPECIFY NUMBER OF VIRTUAL PROCESSORS
ASSOCIATED WITH PHYSICAL CPU. !

OOOC 4D05 LD PRDS.VPNR, #2
0001 0004*
0010 0002
0012 0D08 CLE NEXT_BLOCK
0014 0000*
0016 008 CLR NEXT_AAILVP
0018 0000'
001A 4D08 CLR NEXT_EXTVP
001C 0002'

I ESTABLISH GATE KEEPER AS SISTER CALL
TRAP HANDLER I

I GET BASE OF PROGRAM STATUS AREA !
0011 7D15 LDCTL 1l, PSAP

I ADD SYSTER CALL OFFSET TO PSA BASE ADDR I
0020 0101 ADD RI, #SC..OFFSET
0022 OOOC

I STORE KERNEL FCV IN PSA I
0024 0D15 LD il, *KERNELFCW
0026 5000

I STORE ADDRESS OF GATE KEEPER IN PROGRAM
STATUS AREA AS SYSTEM TRAP HANDLER 1

0028 A911 INC R1, 02
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002A ODIS LD &Rl, #GATE_KEEPEiENTRY
002C 0000*
0023 8D18 CLR RI I NEXT_AVAIL_fiMU INDEX I

I INITIALIZE ALL MMU IMAGES AS AVAILABLE I
SET -MUfAP:

DO
0030 4C15 LDB NEXTAVAILBBU(R1), #AVAILABLE
0032 0000*
0034 0000
0036 A910 INC al, #1

I CHECK FOR END OF TABLE I
0038 OB01 CP El, #AXDBRNR
003k O00A
003C 5OE IF EQ THEN EXIT FRO SETSBU_BAP PI
003E 0044
0040 5308
0042 0046'
0044 38F5 OD

I CREATE MEMORY MANAGER PROCESS 1
0046 2103 LD R3, #STACKBLOCK
0048 0001

I ALLOCATE AND INITIALIZE KERNEL
DOMAIN STACK SEGMENT I

0041 5FO0 CALL ME-ALLOCATE I3: # OF BLOCKS
004C 0000*

RETURNS
R2: START ADDRI

0043 A121 LD R1, R2
0050 2103 LD R3, #KERNELFCN
0052 5000
0054 7604 LDA R4, MfENTRY
0056 0000*
0058 6105 LD R5, FFFF INSPI
0051 FFFF
005C 7606 LDA R6, PREEPTRET
0053 0000*
0060 93F1 PUSH aR15, RI ISAVE STACK ADDB!
0062 030F SUB R15, #8
0064 0008
0066 1CF9 LDM 3915, R3, #4
0068 0303
006A AIF0 LD 3O, 215

I NOTE: ARGLIST FOR CREATE-STACK INCLUDES
KERNELFC, INITIAL IC, NSP, AND INITIAL
RETURN POINT. I

006C 5O0 CALL CREATZSTACK I (R0: ARGUMENT PrR
0063 0000*

3l: TOP OF STACK
32-114: INITIAL
REG.STATES I
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0070 010F ADD R15, #8 IOVERLAY ARGUMENTSI
0072 0008
0I ALLOCATE NHU_IBAGE I
0074 5FO0 CALL ALLOCATE3_MU IRETURNS:
0076 00000

(RO: DBR #) 1
0078 2101 LD R1, #STACK_.SEG I SEGMENT NO. I
007A 0001

007C 97F2 POP R2. 0315 IGBT STACK ADDRI
0073 2103 LD R3, #0 1 WRITE ATTRIBUTE I
0080 0000

I SPECIFY NUMBER OF BLOCKS. COUNT STARTS
0ROB ZERO. (I.E.,I BLOCK-O, 2=1, ETC.1!

S0082 2104 LD Ra, #STACKBLOCK-1
0084 0000

I SAVE DBR # I
"I 0086 93F0 PUSH OR15, RO

I CREATE 989 ENTRY FOR fig STACK SEGMENT I
0088 5F00 CALL UPDATEMHBU_IHAGE I(RO: DBR #
008A 0000*

RI1, SEGMENT #
R2: SEG ADDRESS
R3: SEG ATTRIBUTES
R4: SEG LIMITS) '

I RESTORE DBR # 1
008C 97F0 POP 3O, &RI5

I GET ADDRESS OF MAU IMAGE I
O08E 5FO0 CALL GETDBRADDA 1 (10: DBR #)
0090 0000*U

RETURNS:

(RI: DBR ADDRESS) I
I PREPARE VP TABLE ENTRIES FOR Af 1

0092 2102 LD R2, #2 1 PRIORITY 1
0094 0002
0096 2105 LD R5, #OFF I PREEMPT a
0098 0000
0091 2106 LD R6, #OFF I KERNEL PROCESS I
009C 0000

! UPDATE VPT I
0092 5FO0 CALL UPDATEVPTABLE 1(31: DBR
OOk OCA'

R2: PRIORITY
R5: PREEMPT FLAG
R6: EXT_VP FLAG)
RETURNS:
R9: VPID I

I INITIALIZE MBCPUTBL IN DISTRIBUTED MEMORY
2.ANAGER WITH VP ID OF ON PROCESS I

I GET LOGICAL CPU # I

0O02 610A LD RIO, PRDS.LOGCPUID
O0A 00020
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0016 6Fk9 LD ME_CPU_TBL(RlO, a9
OOA8 0000*

I CREATE IDLE PROCESS I
OOAA 2103 LD R3, #STACKBLOCK
OOAC 0001
OOAE 5F0 CALL MiALLOCATE 113: 0 01 BLOCKS
OOBO 0000*

RETURNS
12: START ADDRI

, 0032 A121 LD Rl, R2
OOB4 2103 LD R3, #KERUEL_FCU
OOB6 5000

. OOB8 7604 LDA R4, IDLE ENTRY
OOBA 00000
OOBC 2105 LD R5, #FFF IiSP!
OOBE FFFF
OOCO 7606 LDA R6, PREEBPT_RET
00C2 00000
OOC4 93F1 PUSH aR15, 31 ISAVE STACK ADDR!
00C6 030F SUB R15, #8
00C8 0008
OOCA 1CF9 LDM d815, R3, #4
OOCC 0303
OOCE AlFO LD RO, 115

- INITIALIZE IDLE STACK VALUES I
OODO 510 CALL CREATE.STACK 1 (10: ARGUMENT PTR
OOD2 0000*

R1: TOP OF STACK
R2-R14: INITIAL
REG. STATES I

OOD4 010F ADD R15, #8 IOVERLAX ARGURENTS!
OOD6 0008

I ALLOCATE MMU IMAGE FOR IDLE PROCESS
OOD8 5p0 CALL ALLOCATEB-SU I RETURNS RO:DBR # I
OODA 00000

I PREPARE IDLE PROCESS SMU ENTRIES I
OODC 2101 LD 3l, #STACKSEG I SEG # I
OODE 0001
OOEO 97P2 POP R2, OR15 IGET STICK ADDRI
OO2 2103 LD R3, #0 1 WRITE ATTRIBUTE I
OOE4 0000
0026 2104 LD R4, #STACK BLOCK-1 I BLOCK LIMITS I
OOES 0000

! SAVE DBR 0 1
OOA 9310 PUSH 8R15, RO

I CREATE MED IMAGE ENTRY I
OOEC 5O0 CALL UPDATEEM UIBAGE I (RI: SEGMENT *
OOE 0000*

R2: SEG ADDRESS
&3: SEG ATTRIBUTES
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R4: SEG LIMITS ) !
I RESTORE DBR # I

00F0 9770 POP RO, dR15

I GET HBO ADDRESS I
00F2 5FO0 CALL GETDBRkDDR I (RO: DBR #)
00F4 0000E S

RETU RNS
(R1: DOR ADDRESS) I

0 PREPARE VPT ENTRIES FOR IDLE PROCESS I0OF6 2102 LD R2, #0 1 PRIORITY I
00F8 0000
00FA 2105 LD R5, #OFF I PREEMPT I
OOFC 0000
OOFE 2106 LD R6, #OFF I KERNEL PROC I
0100 0000

I CREATE VPT ENTRIES I
0102 5FO0 CALL UPDATEVP TABLE 1 (RI: DBR
0104 01CAl

32: PRIORITY
R4: IDLE-FLAG
R5: PREEMPT

R6: BXT_VP FLAG)
RETURNS:
R9: VP_ID I

0 ENTER VP ID OF IDLE PROCESS IN PRDS I
0106 6F09 LD PRDS.IDLE_VP, R9
0108 0006*

I INITIALIZE IDLE VP'S I
010A 2102 LD R2, #1 1 PRIORITY I
olcO 0001
0102 2105 LD R5, #ON I PREEMPT I
0110 FFFF
0112 2106 LD R6, #ON INDS-KERNEL PROC!
0114 FFFF
0116 6100 LD RO, PRDS.VPNR
0118 0001*

I INITIALIZE VP VALUES I
DO

0111 5O0 CALL UPDATEVP_TABLE I(R1: DBR
oliC 01CAI

R2: PRIORITY
R4: IDLE-FLAG
E5: PREEMPT
R6: EXT_VP FLAG)
RETURNS:
R9: VP_ID I

011E BOO DEC R0, #1
0120 OBO0 CP 0, #0
0122 0000
0124 5EOE IF EQ tALL VP'S INITIALIZEDI THEN
0126 012C'
0128 5E08 EXIT
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012A 012E'
FT!012C EDP6 0D
D INITILIZE VPT HEADER I

I GET LOGICAL CPU NUMBER I
012E 6102 LD R2, PRDS.LOGCPUID
0130 0002*
0132 0D05 LD VPT.LOCK, #OFF

0134 0000*
0136 0000
0138 4D25 LD VPT.RUNNNIG_LIST(R2), #tIL
013A 0002*
013C FFFF
0138 4D25 LD VPT.READYLISTB2), #NIL
0140 0006*
0142 FFFF
0144 4D08 CLR VPT.FREELIST IHEAD OF KSG LIST!
0146 O00O*

!THREAD VP'S BY PRIORITY AND SET STATES TO READY !
0148 8D28 CLR R2 ISTART WITH VP #11

THREAD:
DO

014A 610D LD R13, PRDS.LOGCPU_ID
014C 0002*
0142 76D3 LDA R3,VPT.READY_LIST(R13)
0150 0006*
0152 7604 LDA R4,VPT.VP.NEXTREADY_VP
0154 001C*
0156 7605 LDA R5,VPT. VP.PRI
0158 0012*
015A 7606 LDA R6,VPT. VP.STATE
015C 0014*
015E 2107 LD R7,#4E9AD
0160 0001

I SAVE OBJ ID 1
0162 93F2 PUSH &R15, R2
0164 5FO0 CALL LIST-INSERT IR2: OBJ ID
0166 0000*

R3: LISTHEADPTR ADDR
2.4: NEXT OBJ PTR
R5: PRIORITY-PTR
R6: STATEPTB
R7: STATE I

I RESTORE OBJ ID I
0168 97F2 POP R2, aR15
016A 0102 ADD R2, #SIZEOF VPTABLE
016C 0020
016E OB02 CP R2, #(NRVP * (SIZEOF VPTABLE))
0170 0100
0172 5OE IF EQ THEY EXIT FROM THREAD FI
0174 017A'
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0176 5E08
0 178 017C'
017A EE7 OD

I INITIALIZE VP MESSAGE LIST I
I NOTE: ONLY THE THREAD FOR THE MESSAGE
LIST NEED BE CREATED AS ALL MESSAGES
ARE INITIALLY AVAILABLE FOR USE. THE
INITIAL MESSAGE VALUES WERE CREATED
FOR CLARITY ONLY TO SHOM THAT THE
MESSAGES HAVE NO USABLE INITIAL VALUEI

017C 8D18 CLR 31

MSG_LST_INIT:
I NOTE: R1 REPRESENTS CURRENT ENTRY IN
MSGLIST, R2 REPRESENTS CURRENT POSITION
IN SGLIST ENTRY, AND R3 REPRESENTS
NEXT ENTRY IN MSGLIST. !

DO
017E A112 LD R2, R1
0180 A123 LD R3, R2
0182 0103 ADD R3, #SIZEOF MESSAGE
0184 0010

FILL MSG:
DO

0186 4D25 LD VPT.KSGQ.BSG(R2), #INVLID
0188 0110*
018A 3333
018C A921 INC R2, #2
0183 8832 CP R2, R3
0190 590E IF EQ THEN EXIT FROM FILLdSG Fl
0192 0198'
0194 5208
0196 019A
0198 E8F6 OD
019A 4D15 LD VPT.MSGQ.SENDER(RI), #NIL
019C 0120*
019E FF11
01AO k112 LD R2, R1
01A2 0101 ADD R1, #SIZEOF SSGTABLE
01A4 0020
01A6 0B01 CP R1, #SIZEOF MSGJABLE*NRVP
01A8 0100

IF EQ

O1AA 53E THEN
O1AC 013C'

OlAE 4D25 LD VPT.SGQ.NEXT_SG(R2), #NIL
01B0 0122*
01B2 FFFF
01B4 5E08 EXIT FROM MSG_LSTINIT
01B6 01C21
0138 5E08 ELSE
018A OlCO'

018C 6F21 LD YPT.RSGQ.NEXTKSG(R2), 81
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01BE 0122*
FI

OlCO E8DE OD

I GET LOGICAL CPU # FOR USE
BY ITC GETUORK. I

01C2 610D LD R13, PRDS.LOG CPU ID
01C16 00020

I BOOTSTRAP COMPLETE I
I START SYSTEM EXECUTION AT PREEMPT ENTRY
I POINT IN ITC GETWORK PROCEDURE I

01C6 5E08 Jp BOOTSTRAP-ENTRI
01C8 0000*
01CA END BOOTSTRAP
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Ol CA UPDATEVPTABLE PROCEDURE

* INITIALIZES VPT ENTRIES *

* REGISTER USE: *
* PARAMETERS: *
* R1I: DBR ADDRESS *

* R2: PRIORITY *
* R5: PREEMPT FLAG *

R6: EXTERNAL VP FLAG *
* RETURNS:

* R9: ASSIGNED VP ID *
* LOCAL VARIABLES: *
* R7: LOGICAL CPU # *

R8: EXT-VP-LIST OFFSET
* R9: VPT OFFSET

ENTRY
1 GET OFFSET IN VPT FOR NEXT ENTRY I

01CA 6109 LD R9, NEXTkVAILVP
01CC 0000'
01CE 6F91 LD VPT.VP.DBR(R9), R1
01DO 0010*
01D2 6F92 LD VPT.VP.PRI(R9), R2
01D4 0012*
01D6 6F96 LD VPT.VP.IDLE FLAG(R9), R6
OlD8 0016*
01DA 6F95 LD VPT.VP.PREEMPT(E9), R5
O1DC 0018*
O1DE 6107 LD R7, PRDS.LOG_CPU_ID
O1EO 0002*
01E2 6F97 LD VPT.VP.PHYSPROCESSOR(R9), a7
01E4 O01k*
01E6 D95 LD VPT.VP.NEXTREADYVP(R9), #NIL
01E8 001C*
01EA FFFF
01EC 0D95 LD VPT.VP.MSGLISZ(R9), #NIL
01EE O01E*
011O FFFF

! CHECK EXTERNAL VP FLAG I
01F2 0B06 CP R6, #ON
01F4 FFFF

IF EQ !EXTERNAL VPI
01F6 SEOR THEN I VP IS TC VISIBLE I
01F8 0210'
0lIA 6108 LD R8, NEXTEXTVP
01FC 0002'

! INSERT ENTRY IN EXTERNAL VP LIST I
01FE 6F89 LD EXT_VPLIST(R8), R9
0200 0000*
0202 6F98 LD VPT.VP.EXT_D(R9), R8
0204 0020*
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0206 1981 INC R8, #2
0208 6F08 LD NEXTEXTVP, R8
020A 0002'
020C 5E08 ELSE !VP DOUJND TO KERNEL PROCESSI
020E 0216'
0210 4D05 LD VPT.VP.BKTID, #IIL
0212 0020*
0214 FFFF

Fl

0216 A19A LD IO, R9
0218 010A ADD R10, #SIZEOF VPTABLE
021A 0020
021C 6FOA LD NEXTAVAILVP, RI0
021E 0000'
0220 9E08 RET
0222 END UPDATEVP_TABLE

END BOOTSTRAPLOADER
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Appendix 1

LIBRARY FUNCTION LISTINGS

Z8000ASH 2.02
LOC OBJ CODE STNT SOURCE STATEMENT

LIBRARY_FUNCTION MODULE

$LISTON STTY

CONSTANT
KERNEL FCV :z 15000
STACK SEGSIZE := 1100
STACK-BASE STACKSEG-SIZE-110
STATUSREGBLOCK:= STACKSEGSIZE-S10
INTERRUPT-FRAME := STACKBkSE-4
INTERRUPTREG :z INTEREUPT-FRAME-34
mS_ :P INTERRUPTREG-2
NIL := FFFF
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$SECTION LIB_PROC
GLOBAL

0000 LIST_INSERT PROCEDURE

* INSERTS OBJECTS INTO k LIST *
* BY ORDER OF PRIORITY AND SETS
* ITS STATE

* REGISTER USE: *

* PARAMETERS:
R2: OBJECT ID

* R3: HEADOFLIST PTR ADDR
* R4: NEXTOBJPTR ADDR *
* R5: PRIORITY-PTR ADDR *
* R6: STATE PTR ADDR *
* R7: OBJECT STATE
* LOCAL VARIABLES:
, R8: HEAD OF LIST PTR
* R9: NEXTOBJ- PTR
* Rio: CURRENTOBJ PRIORITY
* R11: NEIT OBJ PRIORITY

ENTRY
!1 GET FIRST OBJECT IN LIST I

0000 2138 LD R8, &R3
0002 0B08 CP R8. #NIL
000 FFFF
0006 5EOE IF EQ !LIST IS EMPTY! THEN
0008 0018'

1 PLACE OBJ AT HEAD OF LIST I
000A 2F32 LD SR3, R2
OOOC 7449 LDA R9, R4(R2)
OOOE 0200
0010 0D95 LD &R9, #NIL
0012 FFFF
0014 5E08 ELSE
0016 005A'

1 COMPARE OBJ PRI WITH LIST HEAD PRI I
0018 715k LD R10, R5(R2) IOBJ PHI!
O01A 0200
001C 715B LD R11, R5(R8) 1HEAD PRi1
001E 0800
0020 8BB& CP RlO, Rll
0022 5E02 IF GT !OBJ PRI>BEAD PRI! THEN
0024 0030'
0026 2F32 LD aR3, R2 IPUT AT FRONT!
0028 7348 LD R4(R2), R8
002A 0200
002C 5E08 ELSE I INSERT IN BODY OF LIST I
002E 005A'

SEARCH-LIST:
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DO
0030 0308 CP R8, #NIL
0032 FFFF
0034 5OE IF EQ IEND OF LISTI THEN
0036 003C'
0038 5308 EXIT FROM SEARCH_LIST
003A 0052'

FI
003C 715B LD 111, R5(R8 IGET NEXT PRII
003E 0800
0040 833k CP RO, RIll
0042 5E02 IF GT ICURRENT PRI>NEXT PRII THEN
0044 004A'
0046 5E08 EXIT FROM SEkRCH_LIST
0048 0052'

FI

! GET NEXT OBJ I
004& k189 LD R9, R8
004C 7148 LD 98, R4(29)
0043 0900
0050 E8EF OD I END SEARCH_LIST I

I INSERT IN LIST I
0052 7348 LD R4 (£2) , R8
0054 0200
0056 7342 LD 14(19), £2
0058 0900

FI
FI

I SET OBJECTIS STATE I
005A 7367 LD R6(R2), R7
005C 0200
005E 9308 RET
0060 END LISTINSERT
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0060 CREATESTACK PROCEDURE

* INITIALIZES KERNEL STACK
* SEGMENT FOR PROCESSES

* REGISTER USE:
* PARAMETERS:

RO: ARGUMENT POINTER
(INCLUDES:FCN,ICNSP, AND
RETURN POINT. SEE LOCAL
VARIABLES BELOW.)

Rl: TOP OF STACK
R2-R14: INITIAL REGISTER

STATES. (NOTE: IN DEMO, NO*
SPECIFIC INITIAL REGISTER *
VALUES ARE SET, EXCEPT R13*
(USER ID) FOR USER PRO-
CESSES.)

LOCAL VARIABLES
* (FROM ARGUMENTS STORED ON

* STACK.)*
* R3: FCW*

# R4: PROCESS ENTRY POINT(ICI*
0 R5: NSP *
*. 16: PREEMPT RETURN POINT

ENTRY
0060 93F0 PUSH W15, RO ISAVE ARGUMENT PTRI
0062 ADF0 EX RO, R15 ISAE SPI
0064 341? LDA R15, RI(#INTERRUPTREG)
0066 OOCA
0068 1CF9 LDM aR15, Rl, #16 IINITIAL REG. VALGESI
006A 010F

I NOTE: ONLY REGISTERS R2-R14 MAY CONTAIN
INITIALIZATION VALUES I

006C AM01 LD R15, RO IRESTORE SPI
006E 97F0 POP RO, 3R15 IRESTORE ARGUMENT PTRI
0070 W1FE LD Ri, R15 ISAVE CALLER RETURN POINT!
0072 AM01 LD R15, RO IGET ARGUMENT PTRI
0074 1C,1 LDM R3, OR15. #4 ILOAD ARGUMENTSZ
0076 0303
0078 3411 LD& R15, R(#INTERRUPTFRAME)
007A ooEC
007C ICF9 LDM HR15, R3, #2 SINIT IRET FRAMES
O07E 0301
0080 341? LDA R15, RI(#N_S_P)
0082 00C8
0084 21F5 LD 1R15, R5 ISET NSPI
0086 030? SUB R15, #2
0088 0002
0081 2FF6 LD 3R15, R6 1PREERPT AET POINTI
008C 3418 LDA R, 1l(,STCKBASE)
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0083 OrOO
I INITIALIZE STATUS REGISTER BLOCK I

0090 2100 LD RO, #KERNELJFCM
0092 5000
00914 lC89 LDS OR8, R15, #2 £SAVE SP & FCII
0096 OF01
0098 AlEF LD R15, R14 IRESTORE RETURN POINT!
009A 9308 RET
009C END CREATE STICK

END LIBRARYFUNCTION
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Appendix G

INNER TRAFFIC CONTROLLER LISTINGS

Z8000AS5 2.02
LOC OBJ CODE STNT SOURCE STATEMENT

I NNER_TRAFIC_CONTROL MODULE

SLISTON $TTY

1*$I. GETIORK:
A. NORMAL ENTRY DOES NOT SAVE REGISTERS.
( THIS IS & FUNCTION OF THE GATEKEEPER ).
B. R114 IS AN INPUT PARAMETER TO GETWORK THAT

SIMULATES INFO THAT VILL EVENTUALLY BE ON
THE M.MU HARDWARE. THIS REGISTER MUST BE
ESTABLISHED AS A DBE BY ANY PROCEDURE
INVOKING GETWORK.

C. THE PREEMPT INTERRUPT ENTRY HA'DLE8 DOES
NOT USE THE GATEKEEPER AND RUST PERFORZ
FUNCTIONS NORMALLY ACCOMPLISHED BY IT
PRIOR TO NORMAL ENTRY AND EXIT.

( SAVE/RESTORE: REGS, NSP; UNLOCK VPT, TEST INT)

2. GENERAL:
1. ALL VIOLATIONS OF VIRTUAL MACHINE INSTRUCTIONS

ARE CONSIDERED ERROR CONDITIONS AND MILL RETURN
SYSTEM TO THE MONITOR WITH AN ERROR CODE IN RO
AND THE PC VALUE IN Ri.

B. ITC PROCEDURES CALLING GETMORK PASS DBR
(REGISTER R14) AND LOGICAL CPU NUMBER
(REGISTER R13) AS INPUT PARAMETERS.
(INCLUDES: SIGNAL, WAIT, SWAPVDBR,
PHYSPREEMPTHANDLER, AND IDLE). I

CONSTANT
I *********, ERROR CODES I99*99** £

UL := 0 1 UNAUTHORIZED LOCK I
9 L.EM := I MESSAGE LIST EMPTY I
ICLER : 2 1 MESSAGE LIST ERROR I

_L_E : 3 1 READY LIST EMPTY I
a_L : 4 I MESSAGE LIST OVERFLOW I
S__ := 5 1 SWAP NOT ALLOWED I
11I :2 6 1 VP INDEX ERROR !
5:U := 7 1 SRO UNAVAILABLE I
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I ******SYSTEd PARAMETERS ******** I
NRSDR :64 ILONG WORDS1
NR CPU :2
NR3VP M R-CPU*#
NRAVAILVP M= 5CPU*2
fikX DIR AR :=10 IPER CPU,
STACKSG 1
PRDS-SEG 0

STACK-SEG-SIZE : 100
I ***** OFFSETS IN STACK SIG ***** I

STACKBASE :STACK-SEG-SIZE-%10
STATUS-REG-BLOCK:- STACKSEGSIZE-%10
INTERRUPT-FRAME 3STACK-BASE-4
INTERRUPT_3EG :=INTERRUPT-FRAIE-34
N-Sy :=P INTERRUPT-REG-2

F-C-: STACK-SEG-SIZE-%E

ON : FFFF
OFF :0
RUNNING 0
READY :1
WAITING 32

NIL : FFFF
INVALID USIESE
MONITOR % A900 1 HBUG ENTRY I
KERNEL-FCV %= 5000

ALLOCATED := FF

TYPE
MESSAGE ARRAY C 16 BYTE]
ADDRESS WORD
VP3INDEX INTEGER
MSG-INDEX INTEGER

SEGDESC-RIG RECORD

BASE ADDRESS
ATTRIBUTES BYTE
LlMITS BYTE

MHU ARRAYf NRSDR SEGDBSCBEG]

KSGTABLE RECORD
EMSG MESSAGE

SENDER VPINDEX
WBXTRSG MSGINDSX
FILLER ARRAY L6, WORD)
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VPTABLE RECORD
(DBR ADDRESS

PRI WORD
STATE WORD
IDLEFLAG WORD
PREERPT WORD
PUYSPROCESSOR WORD
NEXT-READYVP YPIINDAX
?SGLIST NSGINDBX
EXTID WORD
FILLER1l ARRAY( 7, WORD]

EXTERN AL
LISTUSEET PROCEDURE

GLOBAL
BOOTSTRAPENTRY LABEL

$SECTION ITC-DATI

0000 VPT RECORD
A fLOCK WORD

RUNNINGLIST ARRAYCNR_.CPU WORD]
READYLIST ARRArE NR-.Pu WORD]
PRZEBJIST ASG3INDEI
VIBT_3NTVEC ARRAI( 1. ADDRESS]
FILLER-2 WORD
VP ARRAY (NR.YP. VPTABLZJ
NSG-Q ARRAY (NR-vp, KSG..TABLEJ

0210 BXTVPLIST ARRAYNBAVAILVP WORD]

$SECTION IBUD&Tk

0000 38UINAGE RECORD

ffHUSTRUCTURE ABRAY( NAXDBRR ED

okoo NEIT_&V&I:LSU ARRAYZIAZ..DBRNR BYTE]
OAOA RDS RECORD

(PRYSCPU3.,D WORD
LOG..CPU3D, INTEGER
VP MR WORD

I IL-VP VP..INDEX]
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$SECTION ITC_1NT_PROC
INTERNAL

0000 GETWORK PROCEDURE

* SWAPS VIRTUAL PROCESSORS
* ON PHYSICAL PROCESSOR. *

* PARARETERS: S

* R13: LOGICAL CPU #I* REGISTER USE:
* STATUS REGISTERS

* R14: DBR (SIMULATION) *
* s R15: STACK-POINTER
* LOCAL VARIABLES:
*s El: READY VP (NEW)
* R2: CURRENT_VP (OLD)
* R3; FLAG CONTROL WORD
* R4: STACKSEG BASE ADDR

R R5: STATUSREGBLOCK ADDR *
R6: NORMAL STACK POINTER *

ENTRY

I GET STACK BASE I
0000 31E4 LD E, R14(#STACKSEG*'4|
0002 0004
000*4 3445 LDA R5, R4(#STATUS_REGBLOCK)
0006 00FO

I * * SAVE SP I
0008 2F5F LD OR5, R15

!* * SAVE FCW * * I
O00A 7D32 LDCTL R3. FCW
OOOC 3343 LD R4(#F_C_W), R3
000Z 00F2

BOOTSTRAP-ENTRY: I GLOBAL LABEL !
I GET READYVP LIST I

0010 61D1 LD El, VPT.READY_LIST(R13)
0012 0006'

S EL ECTV P:
DO ! UNTIL ELGIBLE READYVP FOUND I

0014 4D11 CP VPT.VP.IDLEJLAG(R1), #ON
0016 00161
0018 7pFF
OO1A 5ME IF EQ I VP IS IDLE I THEN
001C 0030'
O01E 4D11 CP VPT.VP.PREEMPT(RI), #ON
0020 0018'
0022 FFFF
0024 5EOE IF EQ I PREEMPT INTERRUPT IS ON I THEN
0026 002C'
0028 5E08 EXIT FROM SELECTVP
002A 003C'
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F'

002C 5EO8 ELSE I VP NOT IDLE I
0022 0034'
0030 5E08 EXIT FROM SELECTVP
0032 003C'

F'
I GET NEXT READY VP 1

0034 6113 LD R3, VPT.VP.NEXTREADYVP(RI)
0036 001CO
0038 A131 LD R1, R3

003A E8EC OD

NOTE: THE READY-LIST WILL NEVER BE EMPTY SINCE
THE IDLE VP, WHICH IS THE LOWEST PRI VP,
WILL NEVER BE REMOVED FROM THE LIST.
IT WILL RON ONLY IF ALL OTHER READY VPoS ARE
IDLING OR IF THERE ARE NO OTHER VP'S ON
THE READY LIST. ONCE SCHEDULED, IT
WILL RUN UNTIL RECEIVING A HDNE INTERRUPT. I

I NOTE: R14 IS USED AS DBR HERE. WHEN aMU
IS AVAILABLE THIS SERIES OF SAVE AND LOAD
INSTRUCTIONS WILL BE REPLACED BY SPECIAL I/O
INSTRUCTIONS TO THE MKU. I

! PLACE NEW VP IN RUNNING STATE !
003C 4D15 LD VPT.VP.STATE(R1), #RUNNING
0032 0014'
0040 0000
0042 6FD1 LD VPT.RUNVINGLIST(R13), RI
0044 0002'

! * * SWAP DRE 1 = I
0046 611E LD R14, VPT.VP.DBR(Rl)
0048 0010'

I LOAD NEW VP SP I
004A 31E4 LD R4, R14(#STACKSEG*4)
004C 0004
0042 3445 LDA R5, R4(#STATUSREG_BLOCK)
0050 OOFO
0052 215F LD R15, &R5

I * LOAD NEW FCW I *1
0054 3143 LD R3, R4(#F_C_W)
0056 00F2
0058 7D3A LDCTL FCW, R3
005A 9E08 RET
005C END GETWORK
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005C ENTERMSG_LIST PROCEDURE

* INSERTS POINTER TO MESSAGE
* FROM CURRENTVP TO SIGMkLEDTP*

* IN FIFO MSGLIST

* REGISTER USE: S
* PARAMETERS:
* R8(R9):HSG (INPUT)
* l: SIGNALEDVP (INPUT)
* R13: LOGICAL CPU NUMBER *

LOCAL VARIABLES: ,
* R2: CURRENTVP
- R3: FIRSTFREEMSG
*• R1: NEXTFREEMSG
* R5: NEXTQMSG
* R6: PRESET_Q_KSG

ENTRY
005C 61D2 LD R2, VPT.RUNNINGLIST(R13)
005E 0002'

I GET FIRST MSG FROM FREE LIST !
0060 6103 LD R3, VPT.FREELIST
0062 O00OA'

t * , * * DEBUG I * * , !
0064 003 CP R3, #NIL
0066 FFF
0068 5EOE IF EQ THEN
006A 0078'
006C 7601 LDA R1, S
006E 006C'
0070 2100 LD RO, #ML_01 MESSAGE LIST OVERFLOW l
0072 0004
0074 5FO0 CALL MONITOR
0076 A900

FI
I * * * END DEBUG I * S 3

0078 6134 LD R4, VPT.MSGQ.NEXT_MSG(R3)
007A 0122'
007C 6F04 LD VPT.FREELIST, R4

* O07E O00A'
I INSERT MESSAGE LIST INFORMATION I

0080 763A LDA R10,VPT.IISG_Q.IMSG(R3)
C082 0110'
0084 2107 LD R7,#SIZEOF MESSAGE
0086 0010
0088 BA81 LDIRB &RIOSR8,27
008A 07AO
008C 6F32 LD TPT.MSGQ.SENDER(R3), R2
008E 0120'
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I INSERT MSG IN MSG LIST I
0090 6115 LD R5, VPT.VP.SSGJ.IST(a1)
0092 001EI

00914 0B05 CP R5, #NIL

0096 FFFF
0098 5RE IF EQ I MSG LIST IS EMPTY I THEN

009A 0k~l IINSERT SSG kT TOP OF LIST I
009C 6F13 LD VPT.VP.KSG.LIST(21), 23
009E OO1EI

*~k 0005EO ELSE I INSERT nSG IN LIST 1

0012 0OBC'1
AS GQS EARCs:
DO I WHILE NOT END oF LIST I

00114 0305 CP R5, #NIL
0016 FFFF
0018 5E0E IF EQ £ END OF LIST I THEN
0011 OOBO'
OOIC 5E08 EXIT FROM KSGQSEARCI
OOAE 00B8'

Fl

I GET NEXT LINK 1
OOBO 1156 LD 26, R5
0032 6165 LD R5, VPT.MSGQ.NEXT-KSG(R6)
00314 0122'
0036 E8F6 OD

I INSERT MISG IN LIST I
00B8 6F63 LD VPT.MSGQ.NEXTSG(R6), R3
0031 01221

F'
OOBC 6F35 LD VPT.RSGQ.NEXTISG(R3) , R5
00B 0122'
00C0 9E08 RET
00C2 END ENTERISGLIST
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00OC2 GET FIRSTKSG PROCEDURE

*REMOVES MSG FROM MSGJ.ISz
*AND PLACES ON FREE LIST.
*RETURNS SENDER'S MSG LID

I *REGISTER USE:
P ARAMETERS:

* 18(R9): MSG POINTER (INPUT)
R 13: LOGICAL CPU NUMBER (INPUT)*

*Rl: SENDER VP (RETURNED)
LOCAL VARIABLES

R 2: CURRENT-VP
R 3: 71RSTMdSG
R 4: NEXT-KSG
RS2: NEXT-FRZEEBSG
R 6: PRESENT-FREE MSG

ENTRY
00C2 61D2 LD R2, VPT.RUNNINGLIST(R13)
00C4 0002'

I REMOVE FIRST MSG FROM MSG..LIST I
00C6 6123 LD R3, YPT.VP.MSGJ.IST(R2)

£ * * *DEBUG** *I

00CR 53GB IF EQ THEN
OODO GODG
00D2 2100 LD 20. #M..LEN I MSG LIST EMPTY I
OOD4 0001
00D6 7601 LDA Ri. $
00D8 00D61
OODA 5F00 CALL MONITOR
OODC k900

Fl
I ***END DEBUG *S I

GODE 61314 LD R4, YPT.KSG-Q.NEXTMISG(R3)
'400O0 0122'

0032 6F24 LD VPT.VP.SSG-LIST(21. R4
00314 O1E'

I INSERT MESSAGE IN FREELIST I
00E6 6105 LD R5, VPT.FREE-LIST
0038 000£'
003£ 0805 CP R5, #NIL
OOzC FFY
0033 5303 IF EQ I FRE.LIST IS EMPTY I THEN
0010 0100'

I INSERT AT TOP OF LIST I
0012 6103 LD TPT.FREELIST, R3
0014 000£'
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0076 4D35 LD VPT.MISG-.Q.MEXTII.SG(R3), #VIL
0078 0122'
007k 7FF?
oopC 5108 ELSE I INSERT IV LIST I
00PE OliC'

FREEQSEARCH:
DO

0100 0805 CP R5, #NIL
0102 FF7?
0104 5303 IF EQ I END 0F LIST I THEN
0106 OlOC'
0108 5308 EXIT PR05 FREEQSEARCE
010A 0114'

71
I GET NEXT ASG I

010C k156 LD 86, R5
010E 6165 LD R5, VPT.INSG-Q.MEXTRSG(16)
0110 0122'
0112 3876 OD

I INSERT IV LIST I
0114 6P63 LD VPT. ASGQ.NVE THSG (961, R3
0116 0122'
0118 6F35 LD YPT.ISG_.Q. NZXTSG (83) , a5
011A 0122'

PI
I GET HE'5&GE INFORNkTIOV:

(RETURNS R1: SENDINGVP) I
011C 6131 LD 11, VPT.IISG..Q.SENDBR(R3)
0113 0120'
0120 763A LDA R10,1PT.SG_.Q.NSG(R31
0122 01100
0124 2107 LD 17.,#SIAZOF llESSAGE
0126 0010
0128 BAAi LDIRB S18,&Rl0,R7
012A 0780
012C 9308 RET
0123 END GET7FIRSTEfSG

-343 -



I INNER TRAFFIC CONTROL BNTRY POINTS * 0 !

I NOTE: ALL INTERRUPTS MUST BE BASKED WHENEVER
THE VPT IS LOCKED. THIS IS TO PREVENT AN
EMBRACE FROM OCCURRING SHOULD AN INTERRUPT
OCCUR WHILE THE VPT IS LOCKED. I

GLOBAL
SSECTION ITCGLBPROC

PRBBPTRET LABEL
KERNELBXIT LABEL

0000 CREATE3WINTVEC PROCEDURE
~~~~~I * **** ********************** **** *

* CREATES ENTRY IN VIRTUAL INT-*
* ERRUPT VECTOR WITH ADDRESS *
* OF THE VIRTUAL INTERRUPT HAN-*
* DLER. *

* PARAMETERS: *
* RI: VIRTUAL INTERRUPT #
* R2: INTERRUPT HANDLER ADDR S

ENTRY
I COMPUTE OFFSET IN VIRTUAL

INTERRUPT VECTOR I
0000 1900 RULT RRO, #SIZEOF ADDRESS
0002 0002

1 SKVE ADDRESS OF VIRTUAL INTERRUPT
HANDLER IN INTERRUPT VECTOR I

0004 6F12 LD VPT.VIRTINT_VEC(RIJ, R2
0006 O00Cc
0008 9108 RET
000A END CRETEINTVEC
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000A GETDBRADDR PROCEDURE

CALCULATES DBR ADDRESS FROM N
, DBR NUMBER *

* REGISTER USE:
* PARAMTERS. *

, RO: DBR # *
* RETURNS: *
* Rl: DBR ADDRESS *
******************************** !

ENTRY
t GET BASE ADDRESS OF KAU IMAGE I

000A 7601 LDA Rl, BU_ZMAGB
000c 00000

1 ADD DEE HANDLE (OFFSET) TO ABU BASE
ADDRESS TO OBTAIN DBR ADDRESS I

0001 8101 ADD R1, DO
0010 9108 RET
0012 END GETDBRADDR

3

-IJ
I Il 1- " - - .. ,.=. .. . = ii



0012 ALLOCATEHNU PROCEDURE

A ALLOCATES NEXT AVAILABLE NEU *
* IMAGE AND CREATES PRDS ENTRY *

REGISTER USE: *
SRETURNS:
* RO: DBR # 0

, LOCAL VARIABLES: *
* I: SEGMENT #
, R2: PRDS ADDRESS S

R3: PRDS ATTRIBUTES
S* *R: PRDS LIMITS**

ENTRY
I GET NEXT AVAILABLE DBR # 1

0012 8D08 CLE RO
0014 8D18 CLI R1

I NOTE: THE FOLLOWING IS A SAFE SEQUENE
AS NEXTAVAILNMU AND NEU ARE CPU LOCALI

GETDBR:
DO

0016 LCl1 CPB NEITAVAIL_BRU (R), #AVAILABLE
0018 OkOO'
001k 0000

IF EQ IMO ENTRY IS AVAILABLEI
001C 510E THEN
001E 0023'
0020 4CiS LDB IEXT_AVAILNNBU(Rl) , #ALLOCATED
0022 0O0'
0024 FFFF
0026 5E08 EXIT FROM GETDBR
0028 004k'
002A 5308 ELSE CURREINT ENTRY IS ALLOCATED!
002C 0048'
0021 A910 INC Rl, #1
0030 0100 ADD ROO #SIZEOF eu
0032 0100

I * * DEBUG I , , ,
0034 OB01 CP RIi, #BAXDBRNR
0036 O00A
0038 5303 IF EQ THEN
003k 0048'
003C 2100 LD 0, #1.._G IBMI UNAVAILABLE!
0031 0007
0040 7601 LDA Ri, s
0042 0040'
0044 5FO0 CALL MONITOR
0046 A900

FI
I * * * END DEBUG * *

0018 1816 OD
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004A 2101 LD R1, #PRDS-SEG I SEGMENT NO. I
004&C 0000
00142 7602 LDA R2, PRODS I PROS ADDR
0050 oOlt
0052 2103 LD R3, #1 1 READ ATTR I
0054 0001
0056 21014 LD R14, #((SIZEOF PRDS)I)/256
0058 0000

I PRODS LIMITS I

I CREATE PROS ENTHY IN RAU IMAGE I
005A 5700 CALL UPDATENMU-IMAGE I (11: SEGMENT #

005C 0601 2: SEG ADDRESS
23: ATTRIBUTES
14: SEG LISITS) I

0053 9108 RET
0060 END ALLOCATE-INRU
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0060 UPDATENM UI5AGE PROCEDURE
I **Stt**,***t***mt****t****€*******

* CREATES SEGMENT DESCRIPTOR *SENTRY IN HSU IMAGE

* REGISTER USE:
, PARAMETERS:

* R0: DBR #
DRI: SEGMENT #

, R2: SEGMENT ADDRESS *
* R3: SEGMENT ATTRIBUTES
*• R4: SEGMENT LIMITS *

* LOCAL VARIABLES: ,
,* RIO: AEU BASE ADDRESS *
* e R13: OFFSET VARIABLE *

ENTRY
0060 210A LD R10, #BMU_IMAGE I ABU BASE ADDRESS 1
0062 0000'
0064 810A ADD RIO, R0
0066 210D LD R13, #SIZROF SEGDESCREG
0068 0004
006A 991C AOLT RR12, Ri I COMPUTE SEGDESC OFFSET I
006C 81DA ADD RIO, R13 IADD OFFSET TO BASE ADDRESS!

I INSERT DESCRIPTOR DATA I
0063 2FA2 LD RIO, R2
0070 A9A1 INC RiO, #2
0072 ODAS CLR &RIO
0074 2EAC LDB 3R10, RL4
0076 A9AO INC RIO, #1
0078 20AC LDB RL4, &RIO
007A OAOB CPB RL3, #%(2)00001000 1 EXECUTE I
007C 0808
0073 5EOE IF EQ TEEN
0080 008A'
0082 060C ANDB RL4, #%(2)11110111 1 EXECUTE MASK I
0084 F7F7
0086 5308 ELSE
0088 ooE'
OOSA 060C ANDB RL4, #%(2)11111110 1 READ BASE I
008C FIFE

PI

0083 84BC ORB RL4, RL3
0090 2EAC LDB RIO, RL4
0092 9308 RET
0094 END UPD&TEEMU_IAGE
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009, WAIT PROCEDURE

* INTRAKERNEL SYNC/CON PRINATIVE
* INVOKED BY KERNEL PROCESSES *

* PARAMETERS
* 8 (R9): HSG POINTER (INPUT) *
* RI: SENDINGVP (RETURN)
* GLOBAL VARIABLES *
* R14i: DBE (PARAN TO GETWORK)
* LOCAL VARIABLES ,
* R2: CURRENTVP (RUNNING) *

R 33: NEIT_READY_¥P ,
R 341: LOCK-ADDRESS *
R 313: LOGICAL CPU NUMBER *

ENTRY
I MASK INTERRUPTS I

0094 7C01 DI VI
I LOCK VPT I

0096 7604 LDA R4, VPT.LOCK
0098 0000'
0091 5100 CALL SPIN-LOCK I (Ri: VPT. LOCK) !I ~009C 02821 I NOTE: RETURNS MHEN VPT IS LOCKED BY THIS VP I

I GET CPU NUMBER I
009E 5P0 CALL GETCPUNO IRETURNS:
OOAO 02C81

RI:CPU #
R2:# VP'S!

002 Al1D LD R13, RI

00A4 61D2 LD R2, VPT.RUNNINGLIS1(R13)
00A6 0002'
OOAS 6123 LD R3, VPT.VP.NEZTREADYVP(R2)
OOAA 001C'

OOAC 4D21 CP VPT.VP.SSG_LIST(R2), #NIL
OO&E O01Eo

0080 FFFF
0OB2 5EOE IF EQ I CURRENT VP'S MSG LIST IS EMPTY I THEN
0084 OOEZA

I REMOVE CURRENTVP FROM READY_LIST I
I * * * * DEBUG * , * * 5

0086 OB03 CP 23, #NIL
0088 FPFF
OOBA 51OE IF EQ THEN
OOC OOCA'
OOBE 2100 LD RO, #R_L_E I READY LIST EMPTY I
OOCO 0003
00C2 7601 LDA R1, $
OOC 00C2'
00C6 510 CALL MONITOR
00C8 A900
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FI
I * , , END DEBUG I * * I

OOCA 6FD3 LD VPT.READYLIST(R13), R3
OOCC 00061
OOCE 14D25 LD VPT.VP.NEZTREAD!_VP(R2), #NIL
00D0 001CI
00D2 FFFF

I PUT IT I WAITING STATE I
OD4 1025 LD VPT.VP.STATE(R2), #VAITING

00D6 0011
OOD8 0002

0 SET DBR I

OODA 612E LD R14, VPT.VP.DBR(R2)
"ODC 0010' 1 SCHEDULE FIRST ELGIBLE READY VP I

OODE 93F8 PUSH AR15,R8
I SAVE LOGICAL CPU * I

00E0 93FD PUSH &R15, R13
OOE2 5FO0 CALL GETVORK IR13:CPU #
00E4 0000'

R14:DBRI
I RESTORE CPU # I

0OE6 97FD POP R13, 1R15
OOE8 97F8 POP R8,115

FI
I GET FIRST MSG ON CURRENT VP'S MSG LIST I

OOEA 5FO0 CALL GETFIRSTBSG I COPIES MSG IN MSG ARRA!I
OOEC 00C2'

I B13: LOGICAL CPU # I
IRETURNS R1:SENDERVP I

l UNLOCK VPT I
OOZE 4D08 CLR VPT.LOCK
OOO 0000'

I UNBASK VECTORED INTERRUPTS I
00F2 7C05 E1 VI

I RETURN: R1:SENDERVP 1
00F4 9O8 RET
00F6 END WAIT
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00F6 SIGNAL PROCEDURE

* INTRAKERNEL SYNC /CON PRILATIVE ,
* INVOKED BY KERNEL PROCESSES *

* REGISTER USE: *
* PARAMETERS: ,
* R8(R9): ESG POINTER (INPUT) *

* Ri: SIGNALED VPID (INPUT)
, GLOBAL VARIABLES ,

R 113: CPU # (PARAM TO GETWORKI *
R14: DBR (PARAN TO GETWORK) *

* LOCAL VARIABLES: *
* RI: SIGNALED VP S
* R2: CURRENTVP
* R 24: VPT.LOCK ADDRESS *

ENTRY
! SAVE VP ID 1

00F6 93F1 PUSH 1R15, R1
I BASK INTERRUPTS I

0078 7C01 DI VI
I LOCK VPT IOOFA 7604 LDA R4,, VPT. LOCK

OOrC 00001OOFE 5F00 CALL SPIN..LOCK I (R4:'VPT.LOCK) I

0 100 02821
INOTE: RETURNS WHEN YPT IS LOCKED BY THIS VP. I

I GET LOGICAL CPU # I
0102 5FO0 CALL GET_CPUNO IRETURNS:
0104 02C8'

R1:CPU #
E2:# VP'S!

0106 AlID LD R13, RI
I RESTORE VP ID I

0108 97F1 POP Ri, &R15

I PLACE MSG IN SIGNALEDVP'S ASGLIST I
010A 5F00 CALL ENTERMSG_LIST I(RB:NSG POINTER
OlOC 005C t  RI:SIGNALEDVP

R13:LOGICAL CPU #) I

*G010E 4D11 CP VPT.VP.STATE(RI), #WAITING
0110 0014'
0112 0002
0114 5OE IF EQ I SIGNALEDVP IS WAITING I THEN
0116 0148'

I WAKE IT UP AND BAKE IT READY I
0118 A112 LD R2, Ri
011A 76D3 LDA R3, VPT.READYLISZ(Ri3)
011C 0006'
011E 7. 4 JA R4, YPT.VP.NEXT_READYVP
0120 t,5
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0122 7605 LDA R5, VPT.VP.PRI
0124 0012'
0126 7606 LDA R6, VPT. VP.STATE
0128 0014'
012A 2107 LD R7, #READY
012C 0001

I SAVE LOGICAL CPU # I
012E 93FD PUSH aR15, R13
0130 5FO0 CALL LIST-INSERT IR2: OBJ ID
0132 0000*

83: LISTPTR ADD!
24: NEXT OBJ PTR
R5: PRIORIT! PTR
R6: STATE PTR
97: STATE

I RESTORE LOGICAL CPU # I
0134 97FD POP 313, 1R15! PUT CURRENTVP IN READY-STATE 1
0136 61D2 LD R2, VPT.RUNNINGLIST(R13)
0138 0002'
0131 4D25 LD VPT.VP.STATE(R2), #READY
013C 0014'
013E 0001

I SET DEl I
0140 612E LD R14, VPT.VP.DBR(R2)
0142 0010'

I SCHEDULE FIRST ELGIBLE READY VP 10144 5FO0 CALL GETVORK IR13:LOGICAL CPU #
0146 0000'

R14:DBR I

I UNLOCK VPT I
0148 4D08 CLR VPT.LOCK
0141 0000'014A 0 UNMASK VECTORED INTERRUPTS I014C 7C05 EI VI

014E 9E08 RET
0150 END SIGNAL
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0150 SET_PRiEMPT PROCEDURE

* SETS PREEMPT INTERRUPT 0*
* TARGETVP. CALLED BY TC _
* ADVANCE. *
*********•,t m **************

* REGISTER USE: •* PAkitiETERS-
* RI:TARGET_VPID (INPUT)

* LOCAL VARIABLES
. RIp VPINDEX •

ENTRY
. iI N E: DESIGNED AS SAFE SEQUENCE SO VPT NEED

N BE LOCKED. I

I ClmVERT VP_ID TO VPINDEX I

0150 6112 LD R2, EXT_VPLIST(Rl)
0152 0210'

I TU :N ON TGTVP PREEMPT FLAG I
0154 4D25 LD VPT.VP.PREEMPT(R2), #0
0156 00181
0158 FFFF

! ** IF TARGET VP NOT LOCAL
( NOT BOUND TO THIS CPU I

CIE, IF <<CPUSEG>>CPU_ID<>.VP.PHYSCPU(RI) ]
THEN SEND HARDWARE PREEMPT INTERRUPT TO

VP .VP.CPu(RI) . ** I

015k 9E08 RET
015C END SE -PREEMPT
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0 15C IDLE PROCEDURE

* LOADS IDLE DBR ON
* CURRENT VP. CALLED BY *
* TCGETVORK. *

* REGISTER USE *
* GLOBAL VARIABLE *
• R13: LOG CPU #

R14: DBR •

• LOCAL VARIABLES: *

,* R2: CURRENTVP t
*, R3: TEMP VAR ,
* R4: VPT.LOCK ADDR *
* R5: TEMP *

ENTRYi
I GET LOGICAL CPU # I

015C 5F00 CALL GET-CPUNO IRETURNS:

I LOAD IDLE DBR ON CURRENT VP I

0174 6103 LD R3, PRDS.IDLEVP
0176 0A10'
0178 6135 LD R5, VPT.VP.DBR(R3)
017A 0010'
017C 6F25 LD VPT.VP.DBR(R2|, R5
017E 00101

I TURN ON CURRENT VP'S IDLE FLAG !
0180 4D25 LD VPT.VP.IDLE.FLAG(R2), #ON
0182 0016'
0184 FFFF

I SET VP TO READY STATZ I
0186 4D25 LD VPT.VP.STATE(R2), #READY
0188 0014'
018A 0001

I SCHEDULE FIRST ELIGIBLE READY VP I
018C 5F00 CALL GETWORK IR13:LOGICAL CPU #
018BE 0000'

R14:DBR I
".4

-' ' I UNLOCK VPT I
0190 4D08 CLR VPT.LOCK
0192 0000'

I UNMASK VECTORED INTERRUPTS I
0194 7C05 Ex VI

0196 9Z08 RET
0198 END IDLE
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0198 SWAP VDBR PROCEDURE

* LOADS NEW DBE ON '
* CURRENT VP. CALLED BY ,
* TCGETWORK.I REGISTER USE 
*PARAMETERS*RI: MZW_DBR (INPUT)
GLOBAL VARIABLES 

* R13: LOGICAL CPU #
*' R14: DBR *

* LOCAL VARIABLES
* R2: CURRENT_¥P
, 8IR: VPT.LOCK ADDR *

ENTRY
! SAVE NEW DBE I

0198 93F1 PUSH &R15, RI
I MASK INTERRUPTS I

019A 7C01 DI vI
I LOCK VPT I

019C 7604 LDA R4, VPT.LOCK
019E 0000'
01AO sF0 CALL SPINLOCK I ('4:-oVPT.LOCK) I
01A2 0282'

I NOTE: RETURNS WHEN VPT IS LOCKED BY THIS VP.1
I GET CPU # I

01A4 5FO0 CALL GETCPUNO IRETURNS:
01A6 02C8'

RI: CPU #
R2:# VP'SJ

01A8 A11D LD R13, R1
! GET CURRENT VP I

01AA 61D2 LD R2. VPT.RUNNINGLIST(R13l
01AC 0002'

1 * * * DEBUG * * 1 I
01AE 4D21 CP ¥PT.VP.NSGLIST(R2), #NIL
01BO O01E,
01B2 FFFF
01B4 5E06 IF ME I MSG WAITING I THEN
01D6 01C4'
01B8 2100 LD RO, #SNA I SWAP NOT ALLOWED I
01BA 0005
O1BC 7601 LDA Rl, S IPCS
01BE 01BC'
olCO 5FO0 CALL MONITOR
01C2 A900

FI

I * * END DEBUG 1 S !
I SET DBR I

01C4 612E LD R14, VPT.VP.DBR(R2)
01C6 0010'

I RESTORE NEW DBE I
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01C8 97F0 POP RO, OR15
OCA 5F0 CALL GET_DBRADDR I (10: DBR #)
0ICC O00A,

RETURNS
(RI: DBR ADDR) I

I LOAD NEW DBR ON CURRENT VP I
01CE 6F21 LD VPT.VP.DBR(R2), RI
01DO 0010'

I TURN OFF IDLE FLAG 1
01D2 4D25 LD VPT.VP.IDLEFLAG(R2), #OFF
O1D4 0016'
01D6 0000

I SET VP TO READ! STATE I
01D8 4D25 LD VPT.VP.STATE(R2j, #READY
01DA 0011

01DC 0001

1 SCHEDULE FIRST ELGIBLE READ! VP I
01DE 5FO0 CALL GETWORK IR13:LOGICAL CPU #
OlEO 0000'

R14:DBR I

1 UNLOCK YPT £
01E2 1,D08 CLR VPT.LOCK
O1E 0000'

I UNHASK VECTORED INTERRUPTS I
01E6 7C05 EI VI

olE8 9E08 RET
01EA END SWAPVDBR
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01EA PH SPREEMPT_HIANDLER PROCEDURE

* HARDWARE PREEMPT INTERRUPT
* HANDLER. ALSO TESTS FOR
* VIRTUAL PREEMPT INTERRUPT
* FLAG AND INVOKES INTERRUPT
* HANDLER IF FLAG IS SET.
* INVOKED UPON EVERY EXIT FROM *
* KERNEL. KERNEL FCW MASKS *
* NVI INTERRUPTS TO PREVENT
* SIMULTANEOUS PREEMPT INTERR.
* HANDLING. *

* REGISTER USE *

* LOCAL VARIABLES
* R1: PREERPTINTFLAG
1 R2: CURRENT VP *

G GLOBAL VARIABLES
* R13:LOGICAL CPU #
4, R14:DBR *

ENTRY

I * * PREEMPT HANDLER * * !

! SAVE ALL REGISTERS I

OlEA 030F SUB R15, #32
01EC 0020
OlEE 1CF9 LDN SR15, RI, #16
0 110 0101

I SAVE NORMAL STACK POINTER (NSP) 1
01F2 7D67 LDCTL R6, NSP
01F4 93F6 PUSH &RiS, R6

I GET CPU # I
0116 510 CALL GETCPUNO ERETURNS:
01P8 02C8'

RI: CPU #
R2:# VPtSI

01F& A1lD LD R13, RI
1 BASK INTERRUPTS I

01PC 7C01 DI VI
I LOCK VPT I

01FE 7604 LDA R4, VPT.LOCK
0200 0000'
0202 510 CALL SPITNLOCK
02014 0282'

IRETURNS WHEN VPT IS LOCKEDI
I SET DBR I

0206 61D2 LD R2, VPT.RUNNING_LIST(R13)
0208 0002'
020A 612E LD 14, VPT.VP.DBR(R2)
020C 0010'
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I PUT CURRENT PROCESS IN READY STATE 1
020E 4D25 LD VPT.VP.STATE(R2), #READY
0210 0014'
0212 0001
0214 5FO0 CALL GETVORK 1R13:LOG CPU #
0216 0000'

PREEAPTRET:
I UNLOCK IPT I

0218 4DO8 CLR VPT.LOCK
021A 0000'

I UNMASK VECTORED INTERRUPTS I
021C 7C05 El VI

KERN ELR IT:
I 9* UNMASK VIRTUAL PREEMPTS I9* !
I ** NOTE: SAFE SEQUENCE AND DOES NOT REQUIRE

VPT TO BE LOCKED. *9 1

I GET CURRENTVP I
021E 610D LD R13, PRDS.LOGCPUTD
0220 OAOC'
0222 61D2 LD R2, VPT.RUNNING_LIST(R13)
0224 0002'

I TEST PREEMPT INTERRUPT FLAG I
0226 %D21 CP VPT.VP.PREEMPT(R2), #0
0228 0018
0221 FFFF
022C 52O IF EQ 1 PREEMPT FLAG IS ON I THEN
022E 0240'

I RESET PREEMPT FLAG I
0230 4D25 LD VPT.VP.PREEBPT(R2), #OFF
0232 0018'
0234 0000

I SIMULATE VIRTUAL PREEMPT INTERRUPT I
0236 2101 LD R1, #0
0238 0000
023A 6112 LD R2, IPT.VIRT_INTVEC(RI)
023C OOOC'
023E IE28 JP SR2

INOTE: THIS JUMP TO TRAFFICCONTROL
IS USED ONLY IN THE CASE OF A PREEMPT INTERRUPT,
AND SIMULATES A HARDWARE INTERRUPT. 9* I

I *** END VIRTUAL PREEMPT HANDLER *** I
FI

I NOTE: SINCE A HDWE INTERRUPT DOES NOT EXIT
THROUGH THE GATE, THOSE FUNCTIONS PROVIDED

BY A GATE EXIT TO HANDLE PREEMPTS MUST BE
PROVIDED HERE ALSO. I
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I RESTORE NSP I
02110 97F6 POP R6, 3R15
0242 7D6F LDCTL NSP, R6

I RESTORE ALL REGSTERS I
0244 1CF1 LDI R1, &R15, #16
0246 010F
0248 010F AJUD R15, #32
024A 0020

1 EXECUTE HARDIARE INTERRUPT RETURN I
024C 7BOO IRET

024E END PHS_PREEMPTKANDLRR
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024E RUNNINGVP PROCEDURE

* CALLED BY TRAFFIC CONTROL. *

* RETURNS VP_ID. RESULT IS VALID*
* ONLY WHILE APT IS LOCKED. *

* REGISTER USE
* PARAIETERS $

RI E: EXTVPID (RETURNED) 4
*" R3: LOG CPU # (RETURNED) *

LOCAL VARIABLES *
* R2: VP INDEX

ENTRY
I lASK INTERRUPTS I

02423 7C01 DI VI
I LOCK YPT I

0250 7604 LDk R4, VPT.LOCK
0252 0000'
0254 5F00 CALL SPINLOCK I (RI:".VRT.LOCK) I
0256 02821

I NOTE: RETURNS WHEN YPT IS LOCKED BY THIS VP I

I GET LOGICAL CPU # I
0258 5FO0 CALL GETCPUNO IRETURNS:
025A 02C8'

al: CPU #
12:1 VP'SI

025C A113 LD R3, Ri

0253 6132 LD R2, VPT.RUNNING_LIST(R3)
0260 0002'

1 CONVERT VPINDEX TO VPID I
0262 6121 LD RI, VPT.VP.EXT_ID(R2)
0264 0020'

! * * * DEBUG * * * I
0266 0301 CP Rl, #NIL
0268 FFFF
026k 530 IF EQ I KERNEL PROC I THEN
026C 027A"
026E 2100 LD RO, #V_I_E I VP INDEX ERROR I
0270 0006
0272 7601 LDA Rl, S
0274 0272'
0276 5F00 CALL MONITOR
0278 A900

Fi
I* * END DEBUG * * I

I UNLOCK VPT I
027A 4D08 CLE VPT.LOCK
027C 0000'

I UNMASK VECTORED INTERRUPTS 1
0273 7C05 Ex VI
0280 9308 RET
0282 END RUNNINGVP
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0282 SPINLOCK PROCEDURE
! *************************

* USES SPIN-LOCK MECH. •
* LOCKS UNLOCKED DATA *
* STRUCTURE (POINTED TO *
* BY INPUT PARAMETER). *

*REGISTER USE *

• PARAMETERS •

* R4: LOCK ADDS (INPUT)*

ENTRY
I NOTE: SINCE ONL! ONE PROCESSOR CURRENTLY

IN SYSTEM, LOCK NOT NECESSARY. ,, I
I * DEBUG I • •

0282 OD41 CP AR4, tOFF
028 0000
0286 5E06 IF NE I NOT UNLOCKED I THEN
0288 02960
028k 2100 LD RO, #U_L I UNAUTHORIZED LOCK I
028C 0000
028E 7601 LDA R1, $
0290 028E'
0292 5FO0 CALL MONITOR
0294 A900

*1 FI

I * END DEBUG *1
TEST-LOCK:

I DO WHILE STRUCTURE LOCKED I
0296 OD46 TSET 3R4
0298 ESE JR MI, TESTLOCK

I ** NOTE SEE PLZ/ASM MANUAL
FOR RESTRICTIONS ON
USE OF TSET. I* 1

029A 9E08 RET

029C END SPINLOCK
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029C ITC GETSEG PTR PROCEDURE

* GETS BASE ADDRESS OF SEGMENT
* INDICATED. *

* REGISTER USE: *
* RO:SEG BASE ADDRESS(RET) *
, Rl:SEG NR (INPUT)
* R2:RUNINGVP (LOCAL) *
, R3:DBR_VALUE (LOCAL) •
* R&: VPT.LOCK •
* R13:LOGICAL CPU # *

ENTRY
I SAVE SEGMENT # I

029C 93F1 PUSS 4215, R1
I MaS XATERRUPTS I

029E 7CO Di VI
I LOCK YPT I

02k0 7604£ r.DA R4,VPT.LOCK
02k2 0000'
021 5F00 CALL SPIN-LOCK IR£:- PT.LOCKI
02k6 0282'

1 GET CPU # I
02k8 5F00 CALL GETCPU-NO [RETURNS:
021 02C8#

al: CPU #
92:# V2651

02AC W11D LD R13, RI
I RESTORE SEGMENT # I

02AE 971I POP Rli, R15
020 61D2 LD R2,VPT.RUNNING_LIST(R13)
02B2 0002'
02B 6123 LD R3,VPT.VP.DBR(R2)
02B6 0010'

I UNLOCK YPT I
0238 4D08 CL! VPT.LOCK
02B0 0000'

I UNMASK VECTORED INTERRUPTS I
02BC 7COS EI VI
0 02BE 1900 MULT RRO #4
02C0 0004
02C2 7130 LD R0,R3 (11)
02C4 0100

02C6 9E08 RET

02C8 END ITCGETSEGPTR
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02C8 GET_CPU NO PROCEDURE

* FIND CURRENT CPU_NO *
* CALLED BY DIST OBGR *
*ANDMM *

* RETURNS *
RI: CPU-NO

* R2: # OF VPIS *

ENTRY
02C8 6101 LD RI. PRDS.LOG CPU ID
02CA OAOC-
02CC 6102 LD R2, PRDS.VPNR
02CE OAOE'
02D0 9E08 BET
02D2 END GETCPUNO

02D2 K LOCK PROCEDURE

* STUB FOR WAIT LOCK

* 4:"LOCK (INPUT) *

ENTRY
02D2 5F00 CALL SPINLOCK
02D4 0282'
02D6 9308 BET
02D8 END KLOCK

02D8 KUNLOCK PROCEDURE

* STUB FOR WAIT UNLOCK *

* RII:-LOCK (INPUT) *

', ENTRY

02D8 0D48 CLR SR#
'4 02DA 9E08 RET

02DC END KUNLOCK

END I NNERTRAFFICCONTROL
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AppendIix a

SEGMENT MANAGER LISTINGS

Z8000ASM 2.02
LOC OBJ CODE STNT SOURCE STATEMENT

$LISTON STTT

SErG GR MODULE

CONSTANT
NULLSEG:=-
NULLAkCCESS :=4
a A1..SEG-No 646
MAX -90KST ENTRIES :=54
HA! SEG SiE :z128
LSTSEGNO :22

NR OF KSEGS :=10
TRUE :21
FALSE :=0
READ :I
WRITE :=0

f**** SUCCESS-CODES ***I
SUCCEEDED :~2
SENTORSEGNOTKNOWN : 22
ACCESSCLASSNOTEQ :=33
tIOTCOMPATIBLE :224

SEGMENTTOOLARGE :=25
NOSEGAV&IL :-27
SEGNENTNOTKNOWN : 28
SBGMENT_11C03E : 29
KERNELSEGMENT :~30
INVALID SEGBENTNO :31
NO-ACCESPERMITTED :*32
LEAF SEGEXISTS :u10
NOLEAFEISTS :=11
ALIASDOESIOTEXZST :23
NOCHILDTODELETE :=20

*GASTPULL :12
LASTFULL :13
PROCCLASSNOTGESEGCLASS : 41
LOCALMEMORJULL 216

GLOB&LHEEORTFULL :17
SECSTORFULL :~21
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MONITOR := %059A

TYPE
H._&RRAY ARRAY ( 3 WOID R

KSTREC RECORD
(Rd HANDLE aBARELY

SIZE WORD
ACCESS BODE BYTE
INCOR BYTE
CLASS LONG
M_S EGNO SHORT_INTEGER
ENTRY-N MBER SHORTINTEGERiI

ADDRESS WORD

SEG_ARRAY ARRAY [MAIXSEG_SIZE BYTE]

INTERNAL

$SECTION SMKSTDCL
I NOTE: THIS SECTION IS AN "OVERLAY"
OR "FRAKE" USED TO DEFINE THE
FORMAT OF THE KST. NO STORAGE
IS ASSIGNED BUT RATHER THE KST IS
STORED IN A SEPARATELY OBTAINED
AREA (k SEGMENT SET ASIDE FOR IT) I

sABS 0
0000 KS? ARRAY MEXNO_KSTENTRIES KST REC

EXTERNAL
CLASSEQ PROCEDURE
CLASSGE PROCEDURE
Mg CREATEENTRY PROCEDURE
MM DELETEENTRY PROCEDURE
tl-ACTIVATE PROCEDURE
MNDEACTIVATE PROCEDURE
38-SVAPIN PROCEDURE
NM-SWAP-OUT PROCEDURE
PROCSS-CLASS PROCEDURE
ITCG ET-SEGPTR PROCEDURE
GETDBR_NUMBER PROCEDURE
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$SECTION SMPROC
GLOBAL

0000 CREATESEG PROCEDURE

I CHECKS VALIDITY OF CREATE I
! REQUEST AND
CALLS MMNCREATE IP VALID.

I REGISTER USE:
! PARAMETERS
! Il: MENTOR SEGNO(INPUT)
I R2: ENTRYO (INPUT)
I R3: SIZE(INPUT)
I RR4: CLASS (INPUT)
I B0: SUCCESS-CODE (RETURNED) I
I LOCAL USE
I R9: KST REC INDEX
! R6,R7 VARIOUS USES
I R13: -%KST

ENTRY
0000 0B03 CP R3,#MAX_SEG_SIZE
0002 0080
0004 5E02 IF GT THEN
0006 0010'
0008 2100 LD RO,#SEGMENTTOOLARGE
O00 0019
000c 5E08 ELSE
O00E 00A2'
0010 030F SUB R15,#10 ISTACK AREA FOR

INPUT REGS!
0012 O00A
0014 1CF9 LDN 3R15,Rl,#5
0016 0104
0018 2101 LD R1,#KSTSEGNO
O01k 0002
001C 5FO0 CALL ITC_GZT_SBG_PTR I1: KSTSEGNO

* O01E O000*.
SIRET: RO:-%KSTt

0020 AlOD LD R13,R0 IKST BASE ADDRESS

(IE -KST) !
0022 1CF1 LD R1,&R15,#5 IRESTORE NEEDED REGS!
0024 0104
0026 A119 LD R9,R1 ICOPY OF SENTOR_SBG_NOI
0028 0309 SUB R9,#NRR_OF_KSEGS ICONVERT

AENTO_SEG_ N0
002A O000k

KSTREC INDEX!

002C 1908 SOLT RR8,#SIZEOF KSTREC

IOFFSET TO KSTRECI

- 366 -



0023 0010
0030 819D ADD R13,R9 [ADD OFFSET TO KST

BASE ADDRESS!
0032 2106 LD R6,#NULLSEG
0034 FFF!
0036 4kDE CPB RL6,KST.ILSEGNO (113)
0038 000E
003k 5EOE IF EQ THEN IM1ENTOR S30 NOT KNOIIN!
003C 0046'
0032 2100 LD RO,#MENTORSBGOTKNOMN
0040 0016
0042 5E08 ELSE
0044 0093'
0046 93FD PUSH &Rl5,R13
0048 5700 C *.L PROCESSCLASS 1UR2:PROC-CLASSI
004k 0000*

*004C 97PD POP B13,&115
004E 54D4 LDL RR4,KST.CLASS(R13)
0050 000k
0052 93FD PUSH &815,313
005'4 5700 CALL CLASSEQ 1332: PROC CLASS!
0056 0000*

1BR4: MENTOR SEG CLASS!
121: (RET) CONDITION CODE!

0058 97FD POP R13,&Rl5
005k A116 LD R6,Rl

005C 1CF1 LDM Rl,S315,#5 IRESTORE INPUT REGS!
0053 0104
0060 0B06 CP R6,#FALSE
0062 0000
0064 5EOE IF EQ THEN
0066 0070'
0068 2100 LD RO,#ACCESSCLiSSNUTEQ
006A 0021
006C 5308 ELSE
006E 0093'
0070 93FD PUSH a815,313 ISAVE uKST!
0072 9442 LDL RR2,RR4 ICLASSI
0074 54D4& LDL RR4,KST.CLASS (R13)
0076 000k
0078 5700 CALL CLASS-GE fRR2:CLASS!
007k 00000

!RB'*: ENTOE CLASS!

007C 97FD POP 113,O115 IRESTORE PTR!
0073 OB01 CP Rl,#FALSE
0080 0000
0082 1CF1 LDM R1,&R15,#5
0084 0104
0086 5303 IF EQ THEN
0088 0092'
008A 2100 LD 20, #NOTCOAPATIBLE
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OOSC 0018
0083 5308 ELSE
0090 0093'
0092 76D1 LDA R I.KST.!EMDLE (R131
0094 0000
0096 5F00 CALL ME-CREATE ETRY

CALL COIINEN CE0
IRI:PTR TO 115 HANDLER
I R2: BY TRYN01
IR3:SZI
I 3R4 :CLASS I
130: (RETUJRNED) SUCCESS-CODES1

* 09C042Pi (RO:SUCCESS-CODE)I

Pi

0098 010? ADD R15,810
ooAo 000k

00A2 9E08 RET
00A4 BID CREATE SEG
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OOA4 DELETE-SSG PROCEDURE

I CHECKS VALIDITY OF DELETE I
I REQUEST AND£
ICALLS 88 DELETE IF VALID. I

I REGISTER USE:
* I PARAMETERS4 I 1MENTOR SEGNO(INPUT) I

I R2: ENTRYNO (INPUT)
I RO: SUCCESSCODE (RET) I
I LOCAL USE
1 R6: VARIOUS LOCAL USES I

ENTRY
00A4 9371 PUSH 4R15,Rl ISAVE NEEDED REGS1
00A6 9372 PUSH aa15.R2
00A8 2101 LD Rl.8KSTSEGNO
OOAA 0002
OOAC 5700 CALL ITC GET SEGPT! 1R1:KST SEG 101
OOAE 0000*
0030 AlOD LD R13,RO £-'KSTI
00B2 97F2 POP R2,&Rl5 IRESTORE INPUT REGSI
0054 97F1 POP Rl,&R15
0036 0301 SUB Rl,#NROFjK.EGS ICONVERT

RENTOitSEGNO TO
00B8 000k

KST REC INDEX!
003k 1900 MULT RRO,#SIZEOF KSTREC !OFFSET

TO DESIRED RECI
0OBC 0010
OOBE 811D ADD R13,Rl1IADD OFFSET TO KST BASE

ADDRESS!
00C0 2106 LD R6,#NULL-SEG
00C2 FFP
00C4 4ADE CPB BL6,KST._SEGNO(R13)
00C6 0003
00C8 5303 IF EQ THEN IMENTOR SEGMENT

NOT KNOUN!
OOCA OODLI'
00CC 2100 LD RO,#HENTRSEGNOTKS0WN
OOCE 0016
OODO 5E08 ELSE
00D2 0103'1
OODII 93F1 PUSH 3R15,Rl ISAVE NEEDED RIGS!
00D6 93F2 PUSH aRl5.R2
00D8 93FD PUSH aR15,R13
OODA 5700 CALL PROCESSCLASS
OODC 00000

I (RETURNS RR2:PROCCLASS) I
OO0DB 97PD POP R13,SR15
0030 54D'4 LDL RR4,KST.CLASS(R13) IMENTOR
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SEG CLASSI
0032 000k
00314 93FD PUSH SR15,213
0036 5700 CALL CLASSEQ IRR2:PROCESS CLASS!
0038 00000

IRR4:1EENTOR SEG CLASSI
I Rl: (RET) CONDIZIOU.CODE I

003Ak£116 LD R6,R1

0033 97F2 POP 32,aI315 IRESTORE NEEDED BEGS!
0070 9771 POP 31,&R15
0072 0B06 CP R6,#FkLSE
00714 0000
0076 5301 IF EQ THEN
0078 0102'
007k 2100 LD R0.#ACCESSCLASS-NOT-EQ
OOVC 0021
0073 5108 ELSE
0100 0103'
0102 76D1 LD& B1,KST.88HJAMDLE(313)
01014 0000
0106 5700 CALL NMDELETEENTRY
0108 0000* R:N-kDE

1 R2: ESTRY-NoI
I RO: (RET) SUCCESSCODE I

010A 5700 CALL COMFINERENT3CHECK
010C 014281

I (RO:SUCCESSCODE) I
Pi

0103 9308 RET
0110 END DELETE-SEG
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0110 MAKE KNOWN PROCEDURE

I CHECKS VALIDITY OF BAKE KNOWN I
R REQUEST AND CALLS dN ACTIVAE !
IF VALID. ASSIGNS SEG I

I NUMBER AND UPDATES KST. I
! ***,,****,*****.******,***,***,,**,,*

I REGISTER USE: I
I PARAMETERS: I
I RI:RENTOR-SEGENO(INPUT) I
! R2:ENTRYNO (INPUT) I
! R3:ACCESSDESIRED(INPUT) 1
! RO:SUCCESSCODE (RET) I
I R! :SEGMET_NO (RET) I
! R2:ACCESSALLONED (RET) I
I LOCAL USE I
I IDENTIFIED AT POINT OF USAGE I

ENTRY
0110 93F1 PUSH 3R15,R1 ISAVE INPUT REGS!
0112 91F2 PUSHL SR15,RR2
0114 2101 LD Rl,#KSTSEGNO
0116 0002
0118 5FO0 CALL ITC GETSEG_PTR l (RI:KSTSEG_$O,

RET:RO: -KST) I
o11A 0000*
011C AlOD LD R13,RO !-KSTt
011E 95F2 POPL RR2,&R15
0120 97FI POP R1,aR15
0122 A115 LD R5,R1 ICOPY OF MENTORSEG _O!
0124 0305 SUB 95.#NROFKSEGS !COUVERT TO

INDEX l
0126 OOOA
0128 1904 MULT RR4,#SIZEOF KSTREC IKST OFFSET

TO SEG REC!
012A 0010
012C 815D ADD R13,R5 IADD OFFSET TO .KSTI
012E 2104 LD R4,#NULLSEG
0130 FFF!
0132 4ADC CPB RL4,KST. BSEGNO(R13)
0134 O00E
0136 53O IF EQ THEN
0138 014A'
013A 2100 LD RO.#BENTORSEGNOTKNOWN
013C 0016
013E 2101 LD R 1,tNULL SEG
0110 FF1F
01412 2102 LD R2,#NULLACCESS
0144 0004
0146 5E08 ELSE
0148 02C8'
014,A 2107 LD R7,#0 IKST INDEX!
014C 0000
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014E 2108 LD R89 eIULLSEG I AVAIL SEQ INDEX!
0150 PFF7
0152 1109 LD R9,R0 1-%KST!
0154 210k LD R10,#NULLSEG ISEG KNOWN INDICkTOR!
0156 PFF?I SEE.,IF-KNOWN:

DO
0158 U499 CPB RLI,KST.NSEGNO (29)
015k 000!
015C 5ZE IF EQ THEN
015! 017CI

*0160 4191 CPB RL2,KST.ENTR..NOEBER(R9)
0162 000?
01614 5EOE IF EQ THEY MCASS: SEG KNOVl
0166 017CI
0168 2100 LD RO,#SUCCEEDZD
0161 0002
016C 0107 ADD R7, IROFSEGS
016E 000k
0170 A17 LD R1,27 !SEG*E
0172 609k LDB RL2,KST.kCCESSA.1DE(R99
0174 0008
0176 k111 LD R10,31 ISET SEG KNOWN

IN DI CkTO I
0178 5E08 EXIT FR05 SEE3FKNOVN
017k 0116'

l

017C 4k9C CPS RL4,KST.]ISEGNO(R9)
ISE! IF SEG # AVILS

017E 000E
0180 52E IF EQ THEN
0182 0192'
0184 0B08 C? R8,#NULLSEG
0186 FFF?
0188 5EOE IF EQ THEY
0181 0192'
018C k178 LD R8,17 ISAVE FIRST

AVAIL SEQ INDEXI
018! 0108 ADD R8,#NR07..KSEGS

ICONVERT TO SSG #1
0190 000k

Fl

0192 197 INC R7
0194 0109 ADD R9,#SIZEOF KSTBEC

SINCREMENT 01! RECt
0196 0010
0198 0307 CP R7,#BkX NO KST ENTRIES
019k 0036
019C 5E02 IF GT THEN
019E 01114l

-372-



0110 5E08 EXIT FROM SE3BIPKOWN
01A2 01A61

FI
01A4 ES D9 0OD

I SE37.KNOVNI
*01A6 030k CP R10,#MULL SEG

01A8 FFF7
O1AA 5303 IF EQ THEY ISEG KNOll

01AC 2C88INDICATOR NOT SET!

01kB 0308 CP RS,#NULLSBG
0130 7FF
01B2 5E06 IF ME THEY ICASE:SEG UNKNOV11

0184 2BCIAND SEG# AVAILI

0186 9170 PUSHL WR5,RRO 1--KST AND
HENTO..SBG..NO £

0188 9172 PUSHL 11R15,112 IENT1X.NO
&ACCBSSDESIRED £

01BA 93F8 PUSH &815,38 IAVAIL SEG
INDEX IN KSTI

01BC 93PD PUSH 1115.113 IMENTOR SEG BEC PTRI
*0133 5700 CALL GETDBEJIUMBER

I (EET:BL1:DBBNO) 1

01C2 AIALD R10,11 IDBR MOI
O1C4I 97FD POP R13,&115
01C6 97F8 POP 18,A115
01C8 95F2 POPL RR2,&115
01CA 95F0 POPL R10,&115

!MUST REARRANGE BEGS FOR PASSING AND
RETURN CONSISTENCY OF LOCATION!

01CC A135 0000
047C 5103 LD R5ER3 IACCESS-DESIEDI
01CR k123 Lb 13,R2 IENTRYNOI
OlDO 76D2 LDA R2,KST.M~fiANDLE.(R13) JHPTll
01D2 0000
O1D4 A116 LD R6,11 113NT01.SZGNOI
0106 1181 LD R1,R8 ISEGIENTNO (SkV1)1
01D8 £184 LD 34.18 £SBGABNTJIO

(PASSING ARG) £
OlDA £109 LD 19,10 I-KSTI
O1DC 0307 SUB R15,#20
01DB 0014
0130 1C79 LDH &R15,11,*10 ISAvE REGS 1-101
0112 0109
0134 L111 LD R1,110 IDRNO PASSED

IN El!
0136 £183 LD R11, R8
0138 0308 SUB Ril, #MR-OFKSEGS
0131 000k
OlEC 190£ MULT R310, #SIZEOF KST_2EC

0133 0010
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0110 AlEC LD R12, 111
01F2 819C ADD R12, R9
01114 5100 CALL MHACTIVATZ
0116 0000*

1 (R1:DBRNO,12:H~PTR, 13:11Th 10,v
R4:SEGIIENTUOR12:RETHPTR) I

i (UT:20: SUCCESSCODE, U2:CLASS,

01F8 5100 CALL CONFINEETCHECK
I (RO:SUCCESSCODE) I

OlPA 04281LL 21,1 CAS
011C 942kAD 90RR CkS
0112 A14C LD 212,2'. ISIZEI
0200 1CFl LDH 21,&R15,#9 IIESTORE RIGS 1-91
0202 0108
0204 k187 LD R7,R8 ISIG #1
0206 0307 SUB B7,#N1_OFKSEGS
0208 OOOA
020k 1906 MULT RR6,GSIZEOF KSTRlC

1OFISET TO RECI
020c 0010
020E W1D LD R13,17
0210 819D ADD 113,19 IADD '%KST TO OFFSET!
0212 SDDA LDL KST.CLASS(R13),RRIO ICLASSI
0214 000A
0216 6FDC LD KST.SIZE(113),R12 ISIZEI
0218 0006
021A 0A08 CPB RLO,#SUCCEEDED
021C 0202
0212 520E IF EQ THEN
0220 02ACI
0222 93FD PUSH O115,113
0224 5100 CALL PROCBSSCLASS
0226 0000*

I (RET:RR2:PROCCLASS) I
0228 97FD POP R13,&115
022A 5404 LDL 114,KST.CLASS (113)
022C OOOA
0222 93FD PUSH SR15.113
0230 91F2 PUSHL SR15,112

40232 91F4 PUSHL 1115,114
0234 5100 CALL CLASS-GE
0236 0000*

I (RR2:PROCCLASS,RR4:SEG CLASS, lET:
21 :CONDI TIONCODE) I

0238 9514 POPL 114,A115
0231 9512 POPL R12,&R15
023C 97FD POP 113,1115
0232 0501 CP 11,#FALSZ
0240 0000
0242 5202 IF EQ THEY 110 ACCESS

POSSIBLZ--DEACT.1
0244 02668
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02416 1CF I LD11 81, 1115, #10
02448 0109
024A il~l LD 11,110 IDBM01
024C 76D2 LDA R2,KST.ff3-ANDLZC113)

024B 0000 
IPR

0250 SF00 CALL tiEDEACTIVATE

0252 00000*RTR:-OZ
0254 SF00 CALL COMI UEINTCMECK

180: SCODEI
0256 0428'
0258 21F1 LD 11.1115 1536 #1
025k 2102 LD 12,#NULLAkCCESS
025C 0004
0251 2100 LD 10,

0260 0029 #P1OC-CLASS_)0T_.GB,_3)GCLASS

0262 5108 ELSE
0264 02A81
0266 93PD PUSH 1315,113
0268 SF00 CALL CLASSEQ £ (HR2:PROC-CLASS,
026A 0000*

RR'4:SEG CLASS,
RET:31 :COMDITIONCODE) I

026C 97FD POP R13,1115
0263 L11.0 LD 10.11 ICONDITIONCODEI
0270 1CF1 LDN R1,&R15,#9
0272 0108
0274 OBOO CP RO,#TRUB
0276 0001
0278 5E03 IF EQ THEN
027A 0290'
027C OB05 CP 15, 8iRITE
0273 0000
0280 SEOE IF EQ THEN
0282 028AI
02814 CAOO LDB RL2dIVRITZ
0286 5308 ELSE
0288 028CI
028A CL0l LDB RL2,#RUAD

4 Fl
028C 5308 ELSE
028E 02921
0290 CA01 LDB 1L2,#READ

0292 4CD5 LDB KST.I153013(R13),#FALSE
0294 0009
0296 0000
0298 63DB LDB KST.HSEGIMO(113),RL6
029A 0003
029C 63DB LDB KST.ENTRTyUBBRl(3).1L3
029E 0001
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0210 6EDA LDB KST.ACCESSKODE (213) .L2
02k2 0008
0214 2100 LD 10. #SUCCEBDED

I SUCCESSCODE I
02A6 0002

Fl
02A8 5208 EL SE
02AA 02B4'
02AC 2101 LD R1.#NULLSEG
02AE F?
02B0 2102 LD R2. #NULL_1CCESS

*02B2 0004

02B6 0014
02B8 5108 ELSE
0231 02C81
02BC 2100 LD RO,#N105EG_111L
0233 0013
02CO 2101 LD R1.*IULLSEG

*02C2 FF?
02C4 2102 LD R2,#NULL1kCCESS
02C6 0004

F'

02C8 9108 lET
02CA END SA1K_0V1W
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02CA TERMINATE PROCEDURE

; CHECKS VALIDITY OF TERNINATE I
I REQUEST AND CALLS I
I 8H_DEACTIVATE IF VALID I

I REGISTER USE I
I PkRARETERSI
! I R:SEGBENT_NO (INPUT)I
! RO:SUCCESSCODE(RET) I
I LOCAL USE
I R3:KST REC INDEX I
I R6:CONSTANT STORAGE I

R13:-,KST I

ENTRY
02CA A113 LD R3,RI ICOPY OF SEG #1
02CC 0303 SUB R3,#NR_OF_KSEGS

ICONVERT SEG# TO KST INDEXI
02CE OOOA
02D0 1902 AULT RR2.#SIZEOF KSTREC
02D2 0010
02D4 93F1 PUSH &R15,R1
02D6 93F3 PUSH aR15,R3
02D8 2101 LD R1,#KSTSEG_NO
02DA 0002
02DC 5F00 CALL ITC GETSEGPTR

I (Rf: KSTSEG_NO) I
02DE 0000*

! (RETURNS:RO:KSTSEGPTR) £
02E0 AlOD. LD R13,RO
02E2 97F3 POP R3,aR15
02E4 971 POP Rl8R 15
02E6 813D ADD R13,R3 IADD OFFSET r0 -'KST!
02E8 2106 LD R6,#NULLSEG
022A FFFF
02EC 4ADE CPB RL6,KST. ASEG_NO(R13)

02EE OOOE02FO 5EOE IF EQ THEN
02F2 02FC'
02F4 2100 LD RO,#SEGdENTNOTKNOMN
02F6 001C
0218 5E08 ELSE
021I 0346'
02FC 2106 LD R6,#TRUE
021E 0001
0300 4ADE CPB RL6,KST.INCORE(R131
0302 0009
0304 5EOE IF EQ THEN
0306 03100
0308 2100 LD R0,#SEGRENTINCORE
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030A 001D
030C 5E08 ELSE
0303 03464

0310 0301 CP RB1,#NBOF-KSEGSI0312 000k
03141 5309 IF LT THEN
0316 03201
0318 2100 LD ROO#KUIVEL.SEGMEIT
031k 001Z
031C 5108 ELSE
0312 0346'
0320 931D PUSH &R15,113
0322 5F00 CALL GZTDB33NUNEER
0324 0000*

I (EETURNS:BL1:DBBN0) £
0326 97FD POP R13,8215
0328 76D2 LDk R2,KST.aa11H&UDLE(113)
032A 0000
032C 9310 PUSH aR15,R13
0323 5100 CALL HKDEACTIVATE I (21:DBRNO0)
0330 00000

I (B2:-Mfi_.HAVDLE) I
I (RET:R0:SUCCESSCODE) I

0332 5700 CALL COIPINERENT-CHECK
0334 0428'

I (R0;SUCCESS CODE) I
0336 97PD POP R13,1115
0338 0A08 CPB RLO,#SUCCIEDED
033A 0202
033C 5303 I? EQ THEN IUPD&TE ESTI
0333 0346'
0340 IICD5 LDE KST.I[SEGNO(RI31,
0342 0003
03414 FF71

* NULLSEG
Fl

Ft
Pi

pi
0346 9308 RET

40348 END TERNINATE
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0348 Sfi$SIAP IN PROCEDURE

I CHECKS VALIDITY OF SNAP IN I

I REQUEST AND CALLS I
IM MSWP_IN IF VALID I

i , ****************************IH REGISTER USE
I PARAMETERS
I R!:SEGNENT_NO (INPUT) I
I RO :SUCCESSCODE (RET)
I LOCAL USE
I R7:KST REC INDEX
I R3:ACCESS MODE
I R6:CONSTANT STORAGE I
I R13:-.KST

ENTRY
0348 AW17 LD R7,R1 ICOPT OF SEG #1
034A 0307 SUB R7, #NROF_KSEGS

!CONVERT SEG# TO KST INDEX)
034C OOOA
034E 1906 MOLT RR6,#SIZEOF KST REC

IOFFSET TO KSTRECI
0350 0010
0352 93F1 PUSH iR15,R1 ISkVE SEGBMETtl
0354 93F7 PUSH SR15,R7
0356 2101 LD R1,#KSTSEGNO
0358 0002
035A 5FO0 CALL ITCGET-SEGPTR Rl:KSTSEGNO
035C 0000*
035E AIOD LD R13,RO I-KSTI
0360 97F7 POP R7,&R15
0362 97F1 POP Rl,&R15 IRETRIEVE SEGRENT#!
0364 817D ADD R13,R7 !ADD OFFSET TO KST BASE ADDRI
0366 2106 LD R6,#NULLSEG
0368 FFFF
036A 4ADE CPB RL6,KST.M1_SEG_NO(R13)
036C o00
036E 530 IF EQ THEN
0370 037A'
0372 2100 LD RO,#SEGHENT_NOTKNOWN
0374 001C
0376 5E08 ELSE
0378 03B8'
037k 2106 LD R6,#TRUE
037C 0001
037E 4ADE CPB RL6,KST.INCORE(R13)
0380 0009
0382 5OE IF EQ THEN
0384 038E'
0386 2100 LD RO,#SUCCEEDED
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0388 0002
038A 5208 ELSE
038C 0388'
0383 93PD PUSH &115,B13 15kVE KS? BBC ADDRI

0390 SF00 CALL GET DBRUMBBE 181: (RE)DB1j101I0392 0000*
0394 97FD POP 313,S115
0396 76D2 LDA 32,K5?. EMjAMDL3(R13j

039k 60DB, LOB 3L3,KST.ACCESSKODE(313)
039C 0008
0393 93FD PUJSH O315,R13 ISAV! SEG KS? REC ADDRI
03A0 SF00 CALL KHSAP-IN l11:DBRMO
03 42 0000* l 2 -ff _ A D~

*1 113: ACCESSKODEI
I RO: (BET) SUCCBSSCODEI

03A4& SF00 CALL CONFIUEKENTCHECK
I (R0: SUCCESS -CODE) I

03A6 0428'
03A8 97FD POP 213,8115
031k 0k08 CPB BLO,#SJCCERDED
03AC 0202
03k! 5303 IF EQ TERM
03B0 038'
03B2 4CD5 LDB KST.INCORE(lI1,#TRUE
0384 0009
0386 0101

FT
Ft

0388 9308 BET
03BA END SSVAPIN
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03BA SI_S WA POUT PROCEDURE

! *****************************t

1 CHECKS VALIDITY OF SWAP OUT !
! REQUEST AND CALLS
I MR SWAPOUT IF VALID !

REGISTER USE
PARAIETERS !

I R1:SEGMENTNO !
I RO :SUCCESSCODE (RET 
! LOCAL USE !
! R7:KST REC INDEX
! R6:CONSTANT STORAGE !
! R13: -,KST 

ENTRY
033A A117 LD R7,R1 ICOPY OF SEG #1
03BC 0307 SUB R7,#NROFKSEGS

!CONVERT SEG# TO KST INDEXI
03BE OOOA
03C0 1906 NULT RR6,#SIZEOF KSTREC

!OFFSET TO KSTREC!
03C2 0010
03C4 93F1 PUSH JR15,R1 !SAVE SEGBENT#!
03C6 93F7 PUSH *R15,R7
03C8 2101 LD Rl,#KSTSEG_NO
03CA 0002
03CC 5FO0 CALL ITCGET_SEGPTR R1:KSTSEGNO!
03CE 0000*
03DO AlOD LD R13,RO I-KSTI
03D2 97F7 POP R7,&R15
03D4 977I POP Rl,a15 !RETRIEVE SEGdENT#!
0306 817D ADD R13,R7 (ADD OFFSET TO KST

BASE ADDR!
03D8 2106 LD R6,#NULLSEG
03DA FFFF
03DC 4ADE CPB RL6,KST. KSEGNO(R13)
03DE OOOE
03EO 5ROE IF EQ THEN
03E2 03EC'
03E4 2100 LD RO,#SEGMENT_NiOTKNO WN
03E6 001C
03E8 5E08 ELSE
033A 0426'
03EC 2106 LD R6,#FALSE
03BE 0000
03FO t4ADE CPB RL6,KST.IN_CORE(R13)
03F2 0009
03F4 5EOE IF EQ THEN
03F6 0400'
03F8 2100 LD RO,#SUCCEEDED
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03PA 0002
03FC 5308 ELSE
0373 0426'
0400 93FD PUSH Ol15,R13 ISAVE KS BBC ADDER
0402 5700 CALL GETDBRNtEBZR I1: (RET) DBRJIOI
0404 0000*
01406 97FD POP R13,&R15
0408 76D2 LOA R2,KST.IEINAIDLB(113)4040A 0000
040C 93FD PUSH SH15,e13 ISAVE 536 KST EEC ADDR!
0140B 5700 CALL MRSUAP-OUT IR1:DBR 101
0410 0000*

1 12:-'NBJIANDLEI
0412 500 1: (RET) SUCCESS CODEZ

04250 CALL CONFINEMENT CHECK
I (10:SUCCESSCODE) f

0414 04281
0416 97PD POP Rl3,aR15
0418 0108 CPB RLO,*SUCCEEDED
041A 0202
041C 5EOE IF EQ THEN
0413 0426'
01420 4CD5 LOB KST.Il130R3 (113),#F&LSE
0422 0009

0424 0000 F

0426 9E08 RET
0428 END SNSVAP-OUT
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0428 CONFINEENT CHECK PROCEDURE

I SERVICE ROUTINE TO VERIFY
. CONFINEMENT IS NOT VIOLATED
WHY EN MGR SUCCESS CODE IS II RTURNED TO SUPERVISOR.

I REGISTER USE:
I PARAMETERS !
I RO:SUCCrSs CODE

ENTRr
IP Ro0428 OBO CASE #LEAF SEGEXISTS THEM

CALL MONITOR
042A 000A
042C 53O
0423 0438'
0430 5100
0432 059A
0434 5208 CASE #NOLEAF-EITS TEY

CALL MZONITOR
0436 0484
0438 0B00
043A 0008
043C 5E03
043B 0448'
01440 5F00
0442 059&0444 5R08 CASE #ALIASDOESNOT EXZSZ THEN

CALL MONITOR
01446 0042i
0448 0800
044A 0017
044c 53Z0
0144 0458'
0450 5F00
0152 059A0454 5308 CASE #NO CHILD TODELETE THEN

CALL M3ONITOR01456 0484'
0458 0800
045A 0014
045C 5303
0453 0468'
0460 5F00
0462 059A
0464 5E08 CASE #GASTFULL THEN

CALL iONITOR
01466 0484f
0468 OB00
046A .OOOC
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046C 53Oe
0463 0478'
0470 5F00
0472 059A
01474 5Z08 CASE #LASTFULL TUEB

CALL RONITOR
0476 04B4'
0478 OBO0
047& O0OD
047C 5203
0473 0488'
0480 510

* 0482 059A
0484 5308 CASE #LOCALBEEORY_FULL THEN

CALL BONITORS01486 014Bd4'

0488 OBOO
048A 0010
048C 530E
048E 0498'
0490 5F00
0492 059A
0494 5308 CASE #GLOBALBEHORYFULL THEY

CALL RONITOR
0496 04B41'
0498 OBO0
049A 0011
049C 5303
049Z 04A8'
04AO 5FO0
04A2 059A
04A4 5E08 CASE #SEC_STOR_FULL THEN

CALL BONITOR
04A6 0434'
0418 OBO0
04AA 0015
04AC 53E0
0 41 04B1,
04BO 50
04B2 059A

SI
014B4 9208 RET
04B6 END CONFINEMNTCHECK

END SEG IGR
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Appendix I

UON-DISCRETIONLEY SECURITY LISTINGS

Z8000ASM 2.02
LOC OBJ CODE STNT SOURCE STATEMENT

SLISTON STTY
liDS MODULE

CONSTANT
?RUE :=1
FALSE :=0

INTERNAL
SSECTION ACCCLLSSDCL INOTE: IS AN OVERLAU,

1. NO ALLOCATION
OF REMORY!

SABS 0
0000 ACCESS-CLASS RECORD [LEVEL INTEGER

CAT INTEGER]

GLOBAL
SSECTION NDSPROC

0000 CLASSEQ PROCEDURE

! PASSED PARAMETERS 1
I RR2 = CLASS1 I
I RR4 = CLASS2
I RETURNED £
I Rl = CONDITION_CODE I

ENTRY
0000 9042 CPL RR2,R34
0002 5EOE IF EQ THEN
0004 0003'
0006 2101 LD R1,#TRUE
0008 0001
000k 5308 ELSE
OOOC 00120
0003 2101 LD Rl,#FALSE
0010 0000

FI
0012 9308 RET
0014 END CLASSEQ
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0014 CLASSGE PROCEDURE

I PASSED PARAMETERS 1
1 R12 = CLASS1 I
I RR4 = CLASS2 I
I RETURNED PARAMETER sI R1 = CONDITION_CODE I

ENTRY
0014 91P2 PUSHL 3R15,RR2 IPUSH CLASSI ON STACK-

-REPER BY ADDRI
0016 A1FD LD R13,R15 I CLASSI &DDB
0018 91F4 PUSHL OR15,RR14
OlA 1IFE LD R14,R15 I CLASS2 ADDR I
001C 3137 LD R7,I4(#ACCESS_CASS.CAT)

I CAT2 IN R7 I
0013 0002
0020 45D7 OR R7,ACCESSCLASS.CAT(R13)
2 0ICATI OR CAT2, R71

;. 0022 0002

0024 4BD7 CP R7,ACCESSCLASS.CAT(213)
ICAT1(CAT1 OR CAT21?1

0026 0002
0028 530Z IF EQ THEN
002A 0048'
002C 61D6 LD R6,ACCESSCLASS.LEVEL (R13)

ILEVEL1!
002B 0000

I COMPARE LEVEL! WITH LEVEL2 I

0030 4BE6 CP R6,ACCESSCLASS.LEVEL(R141
0032 0000
0034 5E01 IF GE THEN ILEVEL1 GE LEVEL21
0036 00401
0038 2101 LD RI,#TRUE
003£ 0001
003C 5308 ELSE
0033 0044'
0040 2101 LD El,#FALSE
0042 0000

0 5
0044 5Z08 ELSE
0046 004C'
0048 2101 LD R1,#FALSE
004A 0000

PI
00C 95P4 POPL RR4,R15
0043 95P2 POPL 112,An15 IRESTORE STACKI
0050 9308 RET
0052 END CLASS_G.

END iDS
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Appendix J

Z800AM 202 MEMORY MAAGER LISTINGS

LOC OBJ CODE STMT SOURCE STATEMENT

$LISTON STT!
MNPROCESS MODULE

I TEES. 1.9 1

kICONlST ANT
RETURN TO MONITOR %= A902 IHBUG REENTRY!

COUNT :10

TIME :2500

IROFHOSTS :2
G..AST_.LIZT :10

G .ASTFULL :12
FiEE ENTRY :2ESEEEEB

TRUE := BBBB
FALSE :2 CCCC
SPkCE : 20
DASH % 2D,

IOMGR%0
FILEMGR %2140
MEN IGR := 00
FlMiNTEY : 4&00
10 ENTRY :% 4Z00
CREATEENTRYCODE :50
INVALID-NMGRCODE :260

DELETEEZNTRYCODE :=51
ACTIVAZESEGCODE 52
DEACTIVATZSEGCODE: = 5.3
SVAPINSEG CODE : 54
SWAPOUTSEG-CODE :255

SUCCEEDED :22

STKSIZE :=1
rOPSECRET :24

SECRET :=3
CONFIDENTIAL :=2
EJNCLASS I=
EMPTY :=0
CRYPTO I=
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NATO := 2
NUCLEAR :i

TYPE
ADDRESS WORD
HkRRAY ARRAI( 3 WORD]

GASTREC RECORD
[UNIQUE_ID LONG
GLOBALADDR ADDRESS
P_L_ASTE3NO WORD
FLAGBITS WORD
GASTE_PAR WORD
NO ACT_IN_HE WORD
NOACTDEP BYTE
SIZE1 BYTE
PGTBLLOC ADDRESS
ALIAS_TBLLOC ADDRESS
SEQUENCER LONG
EVE NTI LONG
EVENT2 LONGI

EXTERNAL
SIGNAL PROCEDURE
WAIT PROCEDURE
TCINIT PROCEDURE
GET_CPUNO PROCEDURE
CREATlPROCESS PROCEDURE
SNDCHR PROCEDURE
SNDMSG PROCEDURE
SNDCRLF PROCEDURE

G_AST_LOCK WORD
G_AST ARRAYG_ASTLIHIT GAST_REC]

GLOBAL
SSECTION dt[_DATA

HNENTRY LABEL
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INTERIAL

I * * E * BSSAGES * * * I 3
0000 08 28 10 ARRAY [* BYTE] :" %08(FOR ZO)l
0002 46 1

0004 52 20
0006 49 14?
0008 29
0009 08 28 F8 ARRAY (* BYTE] - S%08(FOR F)
00B 46 4F
OOOD 52 20
0007' 46 4D

* 0011 29
0012 12 48 BB MSG 1

ARRAY [* BYTE] : 'I12KERUEL : SIGNALLERe'
0014 45 52
0016 42 45
0018 4C 20
001A 3D 20
001C 53 49
001- 47 48

* 0020 41 4C
0022 4C 45
0024 52
0025 10 4D CREATEMSG

ARRAY [* BYTE]: = 1%1089: CRE&TEEUTRY
0027 4D 

3k

0029 20 43
002B 52 45
002D 41 54
002F 45 5F
0031 45 19
0033 54 52
0035 59
0036 10 4 D DBLETEMSG

ARRAY (* BYTE] :1 '%1031: DELET_ENTRY'
0038 4D 3A
003k 20 44
003C 45 4C
0038 45 54
0040 45 5F
0042 45 4E
0044 54 52
0046 59
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00417 OC 4ID ACTIYATEENSG

0049 D 3A ARRAY C* BYTE] :~'%OCIH: ACTIVATE'

004B 20 41
004D 43 54
0014F 49 56
0051 141 5(4
0053 415
00514 0R 'ID DEACTIVATENSG

ARRAY (* BYTE] : SOEN: DEACTIVATE'
0056 4ID 3A
0058 20 '44

005k 45 41

005C 43 54

0065 49 3k
0067 20 53

0062 45 1
006? OC 'ID SWAPOUTNSG

ARRAY (S BYTE] : 'OCMMI: SIAPOUT'
0071 4D 3k
0067 20 53
0075 57 41
0077 50 5?
0079 49 45

006C OC 49 ERRPOUT SG
ARRAY F* BYTE] IOCfIli VA CODE

0071 4D 56
0083 0 53 4
0082 579 41
0084 20 '13
0086 4? 54
0088 4
0089 02 00 ERETYAUS

0088 00 ~ ARRAY (* BYTE] f2.0.00.0.1L 0.1CODE' 0
007D 00 10
008 0 4114
0091 00 03

0093 0050

0095 00 00

0097 00 00

099k KRNSG ARRAY ARRAY C8 WORD ]~,aoo
00kk SENDER WORD
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SABS 0
INO MEMORY ALLOCATED; USED
FOR PARAMETER TEMPLATE ONLYI

0000 ACTIVATE_&RG RECORD
CODE WORD
DEl WORD
HANDLE HARRAY
ENTRYNO BYTE
SEGNVO BYTE

$ABS 0

INO MEMORY ALLOCATED; USED
FOR PARAMETER TEMPLATE ONLYI

0000 RETVAL RECORD
, CODE1 BYTE

FILLER BYTE
MR HANDLE HARRAY
CLASS LONG
SIZE WORD
FILLER 1 WORD

SABS 0
0000 ARGLIST RECORD

REG AIRAY(13 WORD]
IC WORD
CPU ID WORD
SAC LONG
PRI WORD
USRSTK WORD
KERSTK WORD
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$SECTIOI lPROC

0000 MRMAIN PROCEDURE
ENTRYEMENTRY:
I INITIALIZE GAST I

0000 4D08 CLR GASTLOCK
0002 0000*
0004 2102 LD R2, #1
0006 0001
0008 2101 LD Ri, #0
OOO 0000
OOOC 1404 LDL RR4, #FREEENTRY
0003 BEEE
0010 EEE

0012 5D14 LDL GAST.UNIQUE_ID(R1), RR4
0014 0000*
0016 1920 INC R2, #1
0018 OB02 CP R2, #G_ASTLIKIT
0011 OOOA
001C 5E02 IF GT lEND OF GASTI THEN
0013 00241
0020 SE08 EXIT PI
0022 002k'
0024 0101 ADD Rl, #SIZEOF GAST_REC
0026 0020
0028 E8F4 OD

I RESERVE FIRST ENTRY IN
G_AST FOR ROOT I

0021 2101 LD RI, #O
002C 0000
0023 1404 LDL R4, #-I
0030 FFF?
0032 FFF7
0034 5D14 LDL G_kST.UNIQUEID(R1), R34
0036 00000
0038 SF0 CALL GET CPUNO IRETURNS:
0031 00000

RI: CPU #
R2: 8 VP'S

003C 93F1 PUSH 13l5, 31 ISAVE CPU #1
0033 5FO0 CALL TCINIT

* 0040 00000

I USER/HOST # I

0042 210D LD 313, #0
0044 0000

I INITIALIZE USERS I
DO

0046 A9DO INC R13, #1
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0048 OBOD CP R13, #NROFHOSTS
04A 0002

IF GT fALL HOSTS INITIALIZEDI

004C 5E02 THEN EXIT
004B 00548
0050 5E08
0052 00B8'

FI

I CREATE FM PROCESS I

0054 2110 LD RO, OR15 IRESTORE CPU #1
0056 030F SUB R15, #SIZEOF ARGLIST
0058 0028

ISETS ARGUMENT LIST IN STACKI
005A kil1 LD Ri, R15
005C 6F10 LD ARGLIST.CPU_ID(R), R0
005E 001C

I LOAD INITIAL REGISTER PARAMETERS
FOR F5 PROCESS (SIMULATED)
R13 DENOTES USER # I

0060 5C19 LDM ARGLIST.REG(R1) R R2, #13
0062 020C
0064 0000
0066 2102 LD R2, #FNENTRY
0068 4AO0
006A 6F12 LD ARGLIST.IC(RI), R2
006C 001A
006E 2102 LD R2, #SECRET
0070 0003
0072 8D38 CLR R3
0074 0503 OR R3, #CB!PTO
0076 0001
0078 5D12 LDL ARGLIST.SAC(R1), RR2
007A 001E
007C 4D15 LD ARGLIST.PRI(RI), #2
0071 0022
0080 0002
0082 4D15 LD ARGLIST.USRSTK(R1), #STK.SIZE
0084 0024
0086 0001
0088 4D15 LD ARGLIST.KERSTK(R1), #STKSIZE
008A 0026
008C 0001
008E kilE LD 214, Ri
0090 93PD PUSH &R15, 113
0092 5F00 CALL CREATEPROCESS lR14: AIG PTRI
0094 00000
0096 97FD POP R13, SR15

I CREATE 10 PROCESS I
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0098 AlFI LD Ri. R15 IRISTORE ARGUMENT PTRI

!LOAD INITIAL REGISTER PARAMETERS
FOR 10 PROCESS (SIMULATED)
R13 DENOTES USER # I

009A 5019 LDM ARGLIST.REG(R1) , R2, #1.3
009C 020C
009E 0000
OOAO 2102 LD 12, #1IOENTRY
00A2 4100
00A4 6F12 LD ARG-LIST.IC(R1), R2

*00A6 001A
00A8 Ali LD R1., Rl
OOAA 93FD PUSH &R15, R13
OOAC 5F00 CALL CREATEPROCESS IR14.: ARG PTRI
OOAE 0000*
0030 97FD POP R13, 1R15
0032 010F ADD B15, *SIZEOF ARGLIST
0034 0028
0086 28C7 OD

I REMOVE CPU # FROM STACK I
0088 97F0 POP RO. a115

DO !** DO FOREVER **I
003A 7608 LDA R8.NLM1SGARRAY 0
OOBC 009A'
00BE SF00 CALL WAIT
OOCO 0000*
00C2 6F01 LD SENDER, RI 15kV! SIGNALING PROC #1
00C4 OOAAl
00C6 2103 LD R3,#50
00C8 0032
OOCA 5P00 CALL NiMPRINTBLANKS
00CC 030CI
00CR 2102 LD R2,#SAMSG1l
QODO 0012'
00D2 SF00 CALL SNDMSG
00D4 0000*
00D6 6101 LD R1WSE1IDER
00D8 00AAf

IF RI
OODA 0801 CASE #IOMBGR THEN LD R2,#10
OODC 0060
OODE 5101
OOE 0010001
0022 2102
0014 0000'
0036 5100 CALL SIDMSG
0038 0000*
001k 5308 CASE *FILEBGR THEY LD R2,#FM
002C 0011'
0011 0801
0010 0040
00F2 SHOE
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0074 007K'
0076 2102
0018 0009'
007k 5700 CALL SNDMSG
OOFC 0000*

007K 5700 CALL MNDELAY
0 1 C' 02D8'
0102 5700 CALL SNDCRLFI 01011 0000*
0106 2103 LD R3,#50
0108 0032
010k 5700 CALL ~MPRINT.BLANKS
010C 030CI
0102 6101 LD R1,MMIISG..REkY 0
0110 009A,
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IF RI
0112 OB01 CASE #CREATEENTRTCODE THEN
0114 0032
0116 5E3
0118 0122'
011A 510 CALL CREATEENTRY
011C 0193'
011E 5308 CASE #DELZTE EITRYCODE THEN
0120 0176'
0122 OBCS
0124 0033
0126 5EO
0128 0132'
012A 5100 CALL DELET_ETRY
012C OBA'C
012 5E08 CASE #ACTIVATSEGCODB THEN
0130 0176'
0132 OB01
0134 0034
0136 53OE
0138 01421
013A SF00 CALL ACTIVATE
013C 029A'
013E 5E08 CASE #DEACTIVATESEG_CODE THEN
0140 0176'
0142 OB01
0144 0035
0146 53OE
0148 0152'
014A 5100 CALL DEACTIVATE
014C 029C
014E 5E08 CASE #SUAP_ISEGCODE THEN
0150 0176'
0152 OB01
0154 0036
0156 53OE
0158 0162'
015A 5FO0 CALL SVAPOU
015C 02AC
015 5308 CASE #SVAP_OOT_SEG_CODE THEN
0160 0176 t

0162 OB0
0164 0037
0166 52E
0168 01721
016A 5?00 CALL SWAP_OOT

S0 16C 02CA e

0169 5E08 ELSE
01"70 01761
0172 2102 LD R2,#ERRORBSG
0174 007C9
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0176 5FO0 CALL SNDNSG
0178 00000
017A 570 CALL 38_DELAY
017C 02DB'
0173 510 CALL SNDCRLF
0180 0000#
0182 2103 LD R3,#75
0184 004B
0186 5FO0 CALL RIPRINT_LINE
0188 02F41

018&5O0 CALL SNDCRLF
018C 00000

I ** SIGNAL (SENDER, QDONEZ) * I
018E 6101 LD R1, SENDER
0190 OOkA&
0192 7608 LDA R8.N IISGARRAY 0
0194 009A'
0196 5F00 CALL SIGNAL
0198 0000*
019A E88 OD I ** REPEAT FOREVER I* £
019C 9308 RET
019B END fEKAIN

019E CREATEENTRY PROCEDURE

ENTRY
019E 7608 LDA RN,.NSGARRLY 0
0110 009A'
01A2 0C85 LDB 3R8#SUCCEEDBD
0114 0202
01A6 2102 LD R2, #CREATE_fSG
01A8 0025'
01AA 9308 RET
O1AC END CREATEENTRY

01AC DELETEENTRY PROCEDURE

ENTRY
01AC 7608 LDA RS.ENNSGARRAY 0
0113 0091'
018O 0C85 LDB R8.#SUCCEEDED
01B2 0202
01B4 2102 LD R2,#DELZTEMSG
01B6 00360
01B8 9Z08 RET
01BA END DELETE ENTRY
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OlBA ACTIVATE PROCEDURE
I R8: ARGUNENT PTR I

ENTRY
01Bk 7608 LDA R8, HHSSG ARRAY 0
o1sC 009A@
01BE 6182 LD R2, ACTIVATEARG.HANDLZ 2 (R81

ZUNIQUE ID!

01C2 SD38 CLR R3

01C 201B LDB 11, *o IGASTZ INDEX! YVOR8
01C6 0000
01D6 206 SUB R1, #SUB OF RETBIS EACHD
01D8 0010

01DO C DO
O1D2 5101 CD R1 , # GASTUN EDR1)
O1DC 0000*
01DB 2104 L? EQ, #1GN JAR OFCENTI TENRH
01D0 001k

0112 50210 CL RR2, GTU IU-I

0114 BB
01H6 5108 EXIT 1301 SZARCHGAST
0118 0171'

PI
011k A940 INC 24, #1
OlIC 0B04 CR R4, *GASTLIBIT
01ls 000k
0110 5202 IF GT lEND 0f GAkST1 THEN
01P2 011'
011 5108 EXIT ?BOB SEARCSQ.,AST
0116 0111'

F'
0118 0101 ADD R1, #51Z101 GASTREC
011k 0020
Ol7C 1811 OD

0111 0300 CP 100 #FALSE
0200 CCCC

IF EQ ISEGHENT NOT ACTIVE!
0202 5101 THEY
0204 0266'
0206 2100 LD R0, #1
0208 0001
020A 2101 LD R1, #0
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020C 0000
FINDFREE ENTRY:
DO

0202 11404 LDL RR4, #FREEENTRY
0210 EEE
0212 SEEE
0214 5014 CPL RR4, GAST.UNIQUEID(R1)
0216 00000
0218 5EOE IF EQ IENTRY IS AVAILABLZI THEN
021A 0220'
021C 5E08 EXIT FROM FIED_FRZE ENTRY
021E 0234'

PI
0220 A900 INC Ro, #1
0222 OBOO CP RO, #GASTLIMIT
0224 0001
0226 5E02 IF GT IEND OF GAST! THEN
0228 022E'
022A 5208 EXIT FROM FIND_FREE_ENTRY
022C 0234'

Ft
022E 0101 ADD R1, #SIZEOF G ASTREC
0230 0020
0232 E8ED OD

0234 OBOO CP RO, #G_STLIITt 0236 O001
03 IF LE IFOUND FREE ENTRY!
0238 5EOA THEY0231 025CI
023C 5D12 LDL GAST.UNIQUEID(R1), I82
023E 0000*

I ZERO ALL EVENT DATA ENTRIES 1
0240 1404 LDL R34, #0
0242 0000
0244 0000
0246 5D14 LDL GAST.SEQUENCEB(RI), 1R4
0248 0014*
024A 5D14 LDL GAST.EVENTI(R1), 884
024C 0018*
024E 5D14 LDL GST.EVENT2(hl), R14
0250 001C*
0252 4C85 LDB RETVkL.CODEI(R8), #SUCCEEDED
0254 0000
0256 0202

0258 5E08 ELSE
0251k 02620
025C 4C85 LDB RET_VAL.CODBI (R8), #G_AST_ FULL
0251 0000
0260 OCOc

Fr
0262 5E08 ELSE ISEGRENT ACTIVEI
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0264 026CO
0266 4C85 LDB RETV&L.CODEI(R8) , #SUCCBEDED
0268 0000
0261 0202

Fl
026C 5D82 LDL RETVAL.BA_.fIDLE 0 (1), R2
0262 0002
0270 6181 LD RT_V&L.BNSiADLE 2 (R8), R1

0272 0006
0274 1404 LDL RR4, #%30001
0276 0003
0278 0001
027k 5D84 LDL RETVAL. CLASS (R8) , R14
027C 0008
027E 4D85 LD RBET_VL.SZZ-(R8), #1
0280 O0OC
0282 0001
0284 7689 LDA B9, RET_1L(R8)
0286 0000
0288 7608 LDA R8, 88_NSGAR1A! 0
028A 0091'
028C 2102 LD R2, #16
028E 0010
0290 B191 LDIRB 3R8, &R9, R2
0292 0280
0294 2102 LD R2, #ACTIVATZESG

0296 00471
0298 010F ADD R15, #SXZEOF REZT_VAL
029A 0010
029C 9308 RET
0293 END kCTITITI

-400-

S .



029E DEACTIVATE PROCEDURE

ENTRY
029E 7608 LDA R8,mRNSGARRAY 0
02AO 00911
02A2 0C85 LDB aRS#SUCCEEDED
02A4 0202
02A6 2102 LD R2,#DEACTIVTE_HSG

02A8 0054'
02A& 9E08 RET
02AC END DEACTIVATE

02AC SWAPIn PROCEDURE

ENTRY
02AC 2102 LD R2, #%FF30
021E FF30
02BO 3B26 OUT %FFD2, R2
02B2 PFD2
02B4 7608 LDA R8, BM_$SG_ARRAY
02B6 0091 I

02B8 5F00 CALL WAIT IR8:HSG ARRAYI
02B 0000*
028C 7608 LDA R,8_11SGGARRAT 0
02BE 009A'
02C0 0C85 LDB &R8,#SUCCEEDED
02C2 0202
02C4 2102 LD R2,#SAPINESG
02C6 0063'
02C8 9E08 RET
02CA END SWAP_IN
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02CA SWAP..O T PROCEDURE

ENTRY

02CA 7608 LD& R8,KaB5.SGARRAY 0
02CC 009k'
02CR 0C85 LDB 4I8,#SUCCEEDBD
0200 0202
0202 2102 LD R2,#SWAP-OUT.ESG
02D4 006?'
0206 9108 BE?
0208 END SVAPOUT

0208 K.DRLIY PROCEDURE

I PRODUCES 2 SEC DELAY

02D8 2102 LD R2, #COUNT
020 O00A
02DC 2101 LD R1, #TIaE
02DE 01F4

DO
02E0 0B02 CP R2, #0
0222 0000
0224 5303 11 ZQ THE EXIT PI
0226 02EC'
0218 5Z08
022k 0212'
021C kB20 DEC R2
021E 7BID 1RGQ El
02O 38F7 OD
022 9108 RBET
021 END KK_11LiY
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02F4 FM yINTLIie PROCEDURE

I PRINTS LINE LENGTH f

I SPEC IN R3.

ENTRY

0214 C82D LDB RLO. #DASHE

02F6 0B03 CP R3, #0

0218 0000
021A 5EOE IF EQ THEN EXIT PI
021C 0302'
02FE 5E08
0300 030A'
0302 5FO0 CALL SNDCHR
0304 00000
0306 A330 DEC R3
0308 3816 OD
030A 9208 RET
030C END HE.PRINTLINE

030C MR PRINT BLANKS PROCEDURE

! PRINTS NUMBER OF
! BLANKS SPEC IN 23.
! ********************************* !

ENTRY
030C C820 LDB RLO, #SPACE

DO
030E 0B03 CP R3, #0
0310 0000
0312 51OE IF EQ THEN EXIT FI
0314 031A£
0316 5108
0318 03221
031A 5F00 CALL SNDCHR
031C 0000*
0313 AB30 DEC R3
0320 Z8F6 OD
0322 9308 RET
0324 END 88_PRINTBLANKS

END El.PROCESS
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